Department of Applied Sciences , University of Applied Sciences Kaiserslautern , Zweibrücken 66482 , Germany.
Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China.
Langmuir. 2019 Aug 13;35(32):10354-10366. doi: 10.1021/acs.langmuir.9b01425. Epub 2019 Aug 1.
A bacterial cellulose (BC) nanofibril network is modified with an electrically conductive polyvinylaniline/polyaniline (PVAN/PANI) bilayer for construction of potential electrochemical biosensors. This is accomplished through surface-initiated atom transfer radical polymerization of 4-vinylaniline, followed by in situ chemical oxidative polymerization of aniline. A uniform coverage of the BC nanofiber with 1D supramolecular PANI nanostructures is confirmed by Fourier transform infrared, X-ray diffractogram, and CHN elemental analysis. Cyclic voltammograms evince the switching in the electrochemical behavior of BC/PVAN/PANI nanocomposites from the redox peaks at 0.74 V, in the positive scan and at -0.70 V, in the reverse scan, (at 100 mV·s scan rate). From these redox peaks, PANI is the emeraldine form with the maximal electrical performance recorded, showing charge-transfer resistance as low as 21 Ω and capacitance as high as 39 μF. The voltage-sensible nanocomposites can interact with neural stem cells isolated from the subventricular zone (SVZ) of the brain, through stimulation and characterization of differentiated SVZ cells into specialized and mature neurons with long neurites measuring up to 115 ± 24 μm length after 7 days of culture without visible signs of cytotoxic effects. The findings pave the path to the new effective nanobiosensor technologies for nerve regenerative medicine, which demands both electroactivity and biocompatibility.
细菌纤维素(BC)纳米纤维网络经过电导率聚(4-乙烯基苯胺)/聚苯胺(PVAN/PANI)双层修饰,用于构建潜在的电化学生物传感器。这是通过 4-乙烯基苯胺的表面引发原子转移自由基聚合,随后进行苯胺的原位化学氧化聚合来实现的。傅里叶变换红外光谱、X 射线衍射图和 CHN 元素分析证实了 BC 纳米纤维上 1D 超分子 PANI 纳米结构的均匀覆盖。循环伏安法表明,BC/PVAN/PANI 纳米复合材料的电化学行为从正向扫描时的 0.74 V 处的氧化还原峰和反向扫描时的-0.70 V 处的氧化还原峰发生了转变(在 100 mV·s 扫描速率下)。从这些氧化还原峰来看,PANI 是 emeraldine 形式,记录到最大的电性能,显示出低至 21 Ω 的电荷转移电阻和高达 39 μF 的电容。敏感电压的纳米复合材料可以与大脑侧脑室下区(SVZ)分离的神经干细胞相互作用,通过刺激和表征分化的 SVZ 细胞成为专门的成熟神经元,其长突起长达 115 ± 24 μm,在 7 天的培养过程中没有可见的细胞毒性迹象。这些发现为神经再生医学的新型有效纳米生物传感器技术铺平了道路,这种技术需要电活性和生物相容性。