Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia.
Department of Biology, Debre Tabor University, Debra Tabor, Ethiopia.
BMC Genomics. 2021 Jan 6;22(1):20. doi: 10.1186/s12864-020-07320-4.
Genetic improvement of root system architecture is essential to improve water and nutrient use efficiency of crops or to boost their productivity under stress or non-optimal soil conditions. One hundred ninety-two Ethiopian durum wheat accessions comprising 167 historical landraces and 25 modern cultivars were assembled for GWAS analysis to identify QTLs for root system architecture (RSA) traits and genotyped with a high-density 90 K wheat SNP array by Illumina.
Using a non-roll, paper-based root phenotyping platform, a total of 2880 seedlings and 14,947 seminal roots were measured at the three-leaf stage to collect data for total root length (TRL), total root number (TRN), root growth angle (RGA), average root length (ARL), bulk root dry weight (RDW), individual root dry weight (IRW), bulk shoot dry weight (SDW), presence of six seminal roots per seedling (RT6) and root shoot ratio (RSR). Analysis of variance revealed highly significant differences between accessions for all RSA traits. Four major (- logP ≥ 4) and 34 nominal (- logP ≥ 3) QTLs were identified and grouped in 16 RSA QTL clusters across chromosomes. A higher number of significant RSA QTL were identified on chromosome 4B particularly for root vigor traits (root length, number and/or weight).
After projecting the identified QTLs on to a high-density tetraploid consensus map along with previously reported RSA QTL in both durum and bread wheat, fourteen nominal QTLs were found to be novel and could potentially be used to tailor RSA in elite lines. The major RGA QTLs on chromosome 6AL detected in the current study and reported in previous studies is a good candidate for cloning the causative underlining sequence and identifying the beneficial haplotypes able to positively affect yield under water- or nutrient-limited conditions.
改良根系结构对于提高作物对水和养分的利用效率,或者在胁迫或非最佳土壤条件下提高作物的生产力至关重要。本研究共收集了 192 份埃塞俄比亚硬粒小麦材料,包括 167 份传统农家品种和 25 份现代品种,利用 Illumina 高通量 90K 小麦 SNP 芯片对这些材料进行基因型分析,随后使用非滚动纸质根系表型平台对 3 叶期的 2880 株幼苗和 14947 条初生根进行表型分析,共获得了总根长(TRL)、总根条数(TRN)、根生长角度(RGA)、平均根长(ARL)、块根干重(RDW)、单根干重(IRW)、地上部干重(SDW)、每株幼苗具有 6 条初生根(RT6)和根冠比(RSR)等 14 个根系表型性状的表型数据。方差分析表明,所有根系表型性状在供试材料间均存在极显著差异。共鉴定到 4 个主效(-logP≥4)和 34 个加性 QTL,这些 QTL 被聚集成 16 个与染色体相关的 QTL 簇。在 4B 染色体上鉴定到较多与根活力相关的 QTL,特别是与根长、根条数和/或根重相关的 QTL。
将鉴定到的 QTL 投影到四倍体硬粒小麦高密度共识图谱上,并与前人在硬粒小麦和普通小麦中报道的根系表型 QTL 进行整合,发现 14 个 QTL 是新的,可能有助于在优良品种中对根系结构进行针对性改良。本研究在 6AL 染色体上检测到的 RGA 主效 QTL 与前人研究报道的结果一致,该 QTL 是克隆相关调控序列和鉴定有利单倍型的良好候选区域,这些单倍型能够在水分或养分限制条件下对产量产生正向影响。