Witten Edward
Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA.
Proc Math Phys Eng Sci. 2020 Dec;476(2244):20200582. doi: 10.1098/rspa.2020.0582. Epub 2020 Dec 23.
Recently, it has been found that Jackiw-Teitelboim (JT) gravity, which is a two-dimensional theory with bulk action , is dual to a matrix model, that is, a random ensemble of quantum systems rather than a specific quantum mechanical system. In this article, we argue that a deformation of JT gravity with bulk action is likewise dual to a matrix model. With a specific procedure for defining the path integral of the theory, we determine the density of eigenvalues of the dual matrix model. There is a simple answer if (0) = 0, and otherwise a rather complicated answer.
最近,人们发现杰克维-泰特尔博姆(JT)引力,它是一种具有体作用量的二维理论,与一个矩阵模型对偶,也就是说,它是量子系统的随机系综而非特定的量子力学系统。在本文中,我们认为具有体作用量的JT引力的一种变形同样与一个矩阵模型对偶。通过定义该理论路径积分的特定程序,我们确定了对偶矩阵模型的特征值密度。如果 (0) = 0,答案很简单,否则答案相当复杂。