Babaei-Aghbolagh H, He Song, Morone Tommaso, Ouyang Hao, Tateo Roberto
Department of Physics, <a href="https://ror.org/045zrcm98">University of Mohaghegh Ardabili</a>, P.O. Box 179, Ardabil, Iran.
Center for Theoretical Physics and College of Physics, <a href="https://ror.org/00js3aw79">Jilin University</a>, Changchun 130012, China.
Phys Rev Lett. 2024 Sep 13;133(11):111602. doi: 10.1103/PhysRevLett.133.111602.
We develop a generic geometric formalism that incorporates both TT[over ¯]-like and root-TT[over ¯]-like deformations in arbitrary dimensions. This framework applies to a wide family of stress-energy tensor perturbations and encompasses various well-known field theories. Building upon the recently proposed correspondence between Ricci-based gravity and TT[over ¯]-like deformations, we further extend this duality to include root-TT[over ¯]-like perturbations. This refinement extends the potential applications of our approach and contributes to a deeper exploration of the interplay between stress tensor perturbations and gravitational dynamics. Among the various original outcomes detailed in this Letter, we have also obtained a deformation of the flat Jackiw-Teitelboim gravity action.
我们开发了一种通用的几何形式体系,它在任意维度中纳入了类似TT[上划线]和类似根TT[上划线]的变形。该框架适用于广泛的应力 - 能量张量微扰族,并涵盖各种著名的场论。基于最近提出的基于里奇的引力与类似TT[上划线]变形之间的对应关系,我们进一步扩展这种对偶性以纳入类似根TT[上划线]的微扰。这种改进扩展了我们方法的潜在应用,并有助于更深入地探索应力张量微扰与引力动力学之间的相互作用。在本信详细阐述的各种原创成果中,我们还得到了平坦的杰克维 - 泰特尔鲍姆引力作用量的一种变形。