Johnson Clifford V
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, USA.
Phys Rev Lett. 2021 Oct 29;127(18):181602. doi: 10.1103/PhysRevLett.127.181602.
Various two dimensional quantum gravity theories of Jackiw-Teitelboim (JT) form have descriptions as random matrix models. Such models, treated nonperturbatively, can give an explicit and tractable description of the underlying "microstate" degrees of freedom, which play a prominent role in regimes where the smooth geometrical picture of the physics is inadequate. This is shown using a natural tool, a Fredholm determinant det(1-K), which can be defined explicitly for a wide variety of JT gravity theories. To illustrate the methods, the statistics of the first several energy levels of a nonperturbative definition of JT gravity are constructed explicitly using numerical methods, and the full quenched free energy F_{Q}(T) of the system is computed for the first time. These results are also of relevance to quantum properties of black holes in higher dimensions.
各种具有Jackiw-Teitelboim(JT)形式的二维量子引力理论都可以描述为随机矩阵模型。这种非微扰处理的模型能够对潜在的“微观状态”自由度给出明确且易于处理的描述,这些自由度在物理的平滑几何图像不适用的情况下起着重要作用。这是通过一个自然工具——弗雷德霍姆行列式det(1 - K)来展示的,它可以针对多种JT引力理论明确地定义。为了说明这些方法,使用数值方法明确构建了JT引力非微扰定义的前几个能级的统计量,并首次计算了系统的完全淬火自由能FQ(T)。这些结果也与高维黑洞的量子性质相关。