Suppr超能文献

在不同信噪比条件下采集的光学相干断层扫描图像中,通过不同分割算法获取的视网膜层厚度。

Retinal layer thicknesses retrieved with different segmentation algorithms from optical coherence tomography scans acquired under different signal-to-noise ratio conditions.

作者信息

Heikka Tuomas, Cense Barry, Jansonius Nomdo M

机构信息

Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.

出版信息

Biomed Opt Express. 2020 Nov 10;11(12):7079-7095. doi: 10.1364/BOE.399949. eCollection 2020 Dec 1.

Abstract

Glaucomatous damage can be quantified by measuring the thickness of different retinal layers. However, poor image quality may hamper the accuracy of the layer thickness measurement. We determined the effect of poor image quality (low signal-to-noise ratio) on the different layer thicknesses and compared different segmentation algorithms regarding their robustness against this degrading effect. For this purpose, we performed OCT measurements in the macular area of healthy subjects and degraded the image quality by employing neutral density filters. We also analysed OCT scans from glaucoma patients with different disease severity. The algorithms used were: The Canon HS-100's built-in algorithm, DOCTRAP, IOWA, and FWHM, an approach we developed. We showed that the four algorithms used were all susceptible to noise at a varying degree, depending on the retinal layer assessed, and the results between different algorithms were not interchangeable. The algorithms also differed in their ability to differentiate between young healthy eyes and older glaucoma eyes and failed to accurately separate different glaucoma stages from each other.

摘要

青光眼性损伤可通过测量不同视网膜层的厚度来量化。然而,图像质量差可能会妨碍层厚度测量的准确性。我们确定了图像质量差(低信噪比)对不同层厚度的影响,并比较了不同分割算法在抵抗这种退化效应方面的稳健性。为此,我们对健康受试者的黄斑区进行了光学相干断层扫描(OCT)测量,并通过使用中性密度滤光片降低图像质量。我们还分析了不同疾病严重程度的青光眼患者的OCT扫描结果。所使用的算法有:佳能HS - 100的内置算法、DOCTRAP、IOWA以及我们开发的一种方法FWHM。我们表明,所使用的这四种算法在不同程度上都易受噪声影响,这取决于所评估的视网膜层,并且不同算法之间的结果不可互换。这些算法在区分年轻健康眼睛和老年青光眼眼睛的能力方面也存在差异,并且无法准确地将不同的青光眼阶段相互区分开来。

相似文献

3
Macular segmentation with optical coherence tomography.
Invest Ophthalmol Vis Sci. 2005 Jun;46(6):2012-7. doi: 10.1167/iovs.04-0335.
4
Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans.
JAMA Ophthalmol. 2020 Apr 1;138(4):333-339. doi: 10.1001/jamaophthalmol.2019.5983.
6
Macular ganglion cell layer imaging in preperimetric glaucoma with speckle noise-reduced spectral domain optical coherence tomography.
Ophthalmology. 2011 Dec;118(12):2414-26. doi: 10.1016/j.ophtha.2011.06.015. Epub 2011 Sep 15.
8
Diagnostic Accuracy of Spectralis SD OCT Automated Macular Layers Segmentation to Discriminate Normal from Early Glaucomatous Eyes.
Ophthalmology. 2017 Aug;124(8):1218-1228. doi: 10.1016/j.ophtha.2017.03.044. Epub 2017 Apr 29.
9
Segmentation Errors in Macular Ganglion Cell Analysis as Determined by Optical Coherence Tomography.
Ophthalmology. 2016 May;123(5):950-8. doi: 10.1016/j.ophtha.2015.12.032. Epub 2016 Feb 4.

本文引用的文献

1
Testing a phantom eye under various signal-to-noise ratio conditions using eleven different OCT devices.
Biomed Opt Express. 2020 Feb 7;11(3):1306-1315. doi: 10.1364/BOE.383103. eCollection 2020 Mar 1.
2
A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head.
Sci Rep. 2019 Oct 8;9(1):14454. doi: 10.1038/s41598-019-51062-7.
3
Comparison of Associations with Different Macular Inner Retinal Thickness Parameters in a Large Cohort: The UK Biobank.
Ophthalmology. 2020 Jan;127(1):62-71. doi: 10.1016/j.ophtha.2019.08.015. Epub 2019 Aug 21.
4
Structure-function Relationship in Advanced Glaucoma After Reaching the RNFL Floor.
J Glaucoma. 2019 Nov;28(11):1006-1011. doi: 10.1097/IJG.0000000000001374.
5
Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glaucoma.
Ophthalmology. 2019 Jul;126(7):980-988. doi: 10.1016/j.ophtha.2019.03.003. Epub 2019 Mar 8.
7
Influence of coherence length, signal-to-noise ratio, log transform, and low-pass filtering on layer thickness assessment with OCT in the retina.
Biomed Opt Express. 2016 Oct 7;7(11):4490-4500. doi: 10.1364/BOE.7.004490. eCollection 2016 Nov 1.
8
Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography.
Br J Ophthalmol. 2015 Sep;99(9):1224-9. doi: 10.1136/bjophthalmol-2014-305907. Epub 2015 Mar 20.
9
Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma.
Br J Ophthalmol. 2015 Jun;99(6):732-7. doi: 10.1136/bjophthalmol-2014-305745. Epub 2014 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验