Son Jeonghwan, Mandracchia Biagio, Jia Shu
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
Biomed Opt Express. 2020 Nov 18;11(12):7221-7235. doi: 10.1364/BOE.410605. eCollection 2020 Dec 1.
Fluorescence live-cell imaging allows for continuous interrogation of cellular behaviors, and the recent development of portable live-cell imaging platforms has rapidly transformed conventional schemes with high adaptability, cost-effective functionalities and easy accessibility to cell-based assays. However, broader applications remain restrictive due to compatibility with conventional cell culture workflow and biochemical sensors, accessibility to up-right physiological imaging, or parallelization of data acquisition. Here, we introduce miniaturized modular-array fluorescence microscopy (MAM) for compact live-cell imaging in flexible formats. We advance the current miniscopy technology to devise an up-right modular architecture, each combining a gradient-index (GRIN) objective and individually-addressed illumination and acquisition components. Parallelization of an array of such modular devices allows for multi-site data acquisition using conventional off-the-shelf cell chambers. Compared with existing methods, the device offers a high fluorescence sensitivity and efficiency, exquisite spatiotemporal resolution (∼3 µm and up to 60 Hz), a configuration compatible with conventional cell culture assays and physiological imaging, and an effective parallelization of data acquisition. The system has been demonstrated using various calibration and biological samples and experimental conditions, representing a promising solution to time-lapse single-cell imaging and analysis.
荧光活细胞成像能够持续监测细胞行为,而便携式活细胞成像平台的最新发展迅速改变了传统方案,具有高度适应性、高性价比功能以及易于进行基于细胞的检测。然而,由于与传统细胞培养工作流程和生化传感器的兼容性、进行直立式生理成像的可及性或数据采集的并行化,更广泛的应用仍然受到限制。在此,我们介绍用于灵活格式紧凑活细胞成像的小型化模块化阵列荧光显微镜(MAM)。我们改进了当前的微型显微镜技术,设计出一种直立式模块化架构,每个模块都结合了一个梯度折射率(GRIN)物镜以及单独寻址的照明和采集组件。一系列此类模块化设备的并行化允许使用传统的现成细胞培养室进行多部位数据采集。与现有方法相比,该设备具有高荧光灵敏度和效率、出色的时空分辨率(约3微米和高达60赫兹)、与传统细胞培养检测和生理成像兼容的配置以及有效的数据采集并行化。该系统已在各种校准和生物样本以及实验条件下得到验证,代表了一种用于延时单细胞成像和分析的有前景的解决方案。