Suppr超能文献

使用傅里叶神经网络在计算多孔径微型内窥镜中进行宽视野、高分辨率重建。

Wide-field, high-resolution reconstruction in computational multi-aperture miniscope using a Fourier neural network.

作者信息

Yang Qianwan, Guo Ruipeng, Hu Guorong, Xue Yujia, Li Yunzhe, Tian Lei

机构信息

Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA.

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA.

出版信息

Optica. 2024 Jun 20;11(6):860-871. doi: 10.1364/OPTICA.523636. Epub 2024 Jun 13.

Abstract

Traditional fluorescence microscopy is constrained by inherent trade-offs among resolution, field of view, and system complexity. To navigate these challenges, we introduce a simple and low-cost computational multi-aperture miniature microscope, utilizing a microlens array for single-shot wide-field, high-resolution imaging. Addressing the challenges posed by extensive view multiplexing and non-local, shift-variant aberrations in this device, we present SV-FourierNet, a multi-channel Fourier neural network. SV-FourierNet facilitates high-resolution image reconstruction across the entire imaging field through its learned global receptive field. We establish a close relationship between the physical spatially varying point-spread functions and the network's learned effective receptive field. This ensures that SV-FourierNet has effectively encapsulated the spatially varying aberrations in our system and learned a physically meaningful function for image reconstruction. Training of SV-FourierNet is conducted entirely on a physics-based simulator. We showcase wide-field, high-resolution video reconstructions on colonies of freely moving and imaging of a mouse brain section. Our computational multi-aperture miniature microscope, augmented with SV-FourierNet, represents a major advancement in computational microscopy and may find broad applications in biomedical research and other fields requiring compact microscopy solutions.

摘要

传统荧光显微镜受到分辨率、视野和系统复杂性之间固有权衡的限制。为应对这些挑战,我们引入了一种简单且低成本的计算多孔径微型显微镜,它利用微透镜阵列进行单次宽视野、高分辨率成像。针对该设备中广泛的视野复用以及非局部、移位变体像差带来的挑战,我们提出了SV-FourierNet,一种多通道傅里叶神经网络。SV-FourierNet通过其学习到的全局感受野促进了整个成像区域的高分辨率图像重建。我们在物理空间变化的点扩散函数与网络学习到的有效感受野之间建立了紧密的关系。这确保了SV-FourierNet有效地封装了我们系统中的空间变化像差,并学习到了用于图像重建的具有物理意义的函数。SV-FourierNet的训练完全在基于物理的模拟器上进行。我们展示了在自由移动的菌落上的宽视野、高分辨率视频重建以及对小鼠脑切片的成像。我们的计算多孔径微型显微镜与SV-FourierNet相结合,代表了计算显微镜的一项重大进展,并可能在生物医学研究和其他需要紧凑型显微镜解决方案的领域中得到广泛应用。

相似文献

2
Deep-learning-augmented computational miniature mesoscope.深度学习增强型计算微型内窥镜。
Optica. 2022 Sep 20;9(9):1009-1021. doi: 10.1364/optica.464700. Epub 2022 Aug 29.
10
Time-Division Multiplexing Light Field Display With Learned Coded Aperture.基于学习编码孔径的时分复用光场显示
IEEE Trans Image Process. 2023;32:350-363. doi: 10.1109/TIP.2022.3203210. Epub 2022 Dec 20.

本文引用的文献

3
Real-time, deep-learning aided lensless microscope.实时深度学习辅助无透镜显微镜。
Biomed Opt Express. 2023 Jul 10;14(8):4037-4051. doi: 10.1364/BOE.490199. eCollection 2023 Aug 1.
5
Deep-learning-augmented computational miniature mesoscope.深度学习增强型计算微型内窥镜。
Optica. 2022 Sep 20;9(9):1009-1021. doi: 10.1364/optica.464700. Epub 2022 Aug 29.
6
Recent Advances in Lensless Imaging.无透镜成像的最新进展。
Optica. 2022 Jan 20;9(1):1-16. doi: 10.1364/optica.431361. Epub 2021 Dec 22.
7
Learned lensless 3D camera.智能无透镜3D相机。
Opt Express. 2022 Sep 12;30(19):34479-34496. doi: 10.1364/OE.465933.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验