Yang Qianwan, Guo Ruipeng, Hu Guorong, Xue Yujia, Li Yunzhe, Tian Lei
Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA.
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA.
Optica. 2024 Jun 20;11(6):860-871. doi: 10.1364/OPTICA.523636. Epub 2024 Jun 13.
Traditional fluorescence microscopy is constrained by inherent trade-offs among resolution, field of view, and system complexity. To navigate these challenges, we introduce a simple and low-cost computational multi-aperture miniature microscope, utilizing a microlens array for single-shot wide-field, high-resolution imaging. Addressing the challenges posed by extensive view multiplexing and non-local, shift-variant aberrations in this device, we present SV-FourierNet, a multi-channel Fourier neural network. SV-FourierNet facilitates high-resolution image reconstruction across the entire imaging field through its learned global receptive field. We establish a close relationship between the physical spatially varying point-spread functions and the network's learned effective receptive field. This ensures that SV-FourierNet has effectively encapsulated the spatially varying aberrations in our system and learned a physically meaningful function for image reconstruction. Training of SV-FourierNet is conducted entirely on a physics-based simulator. We showcase wide-field, high-resolution video reconstructions on colonies of freely moving and imaging of a mouse brain section. Our computational multi-aperture miniature microscope, augmented with SV-FourierNet, represents a major advancement in computational microscopy and may find broad applications in biomedical research and other fields requiring compact microscopy solutions.
传统荧光显微镜受到分辨率、视野和系统复杂性之间固有权衡的限制。为应对这些挑战,我们引入了一种简单且低成本的计算多孔径微型显微镜,它利用微透镜阵列进行单次宽视野、高分辨率成像。针对该设备中广泛的视野复用以及非局部、移位变体像差带来的挑战,我们提出了SV-FourierNet,一种多通道傅里叶神经网络。SV-FourierNet通过其学习到的全局感受野促进了整个成像区域的高分辨率图像重建。我们在物理空间变化的点扩散函数与网络学习到的有效感受野之间建立了紧密的关系。这确保了SV-FourierNet有效地封装了我们系统中的空间变化像差,并学习到了用于图像重建的具有物理意义的函数。SV-FourierNet的训练完全在基于物理的模拟器上进行。我们展示了在自由移动的菌落上的宽视野、高分辨率视频重建以及对小鼠脑切片的成像。我们的计算多孔径微型显微镜与SV-FourierNet相结合,代表了计算显微镜的一项重大进展,并可能在生物医学研究和其他需要紧凑型显微镜解决方案的领域中得到广泛应用。