Sinton Matthew C, Meseguer-Ripolles Jose, Lucendo-Villarin Baltasar, Wernig-Zorc Sara, Thomson John P, Carter Roderick N, Lyall Marcus J, Walker Paul D, Thakker Alpesh, Meehan Richard R, Lavery Gareth G, Morton Nicholas M, Ludwig Christian, Tennant Daniel A, Hay David C, Drake Amanda J
University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
Centre for Regenerative Medicine, University of Edinburgh, Institute for Regeneration and Repair, Edinburgh BioQuarter, 5 Little France Crescent, Edinburgh, EH16 4UU, UK.
iScience. 2020 Dec 11;24(1):101931. doi: 10.1016/j.isci.2020.101931. eCollection 2021 Jan 22.
Nonalcoholic fatty liver disease (NAFLD) is currently the most prevalent form of liver disease worldwide. This term encompasses a spectrum of pathologies, from benign hepatic steatosis to non-alcoholic steatohepatitis, which have, to date, been challenging to model in the laboratory setting. Here, we present a human pluripotent stem cell (hPSC)-derived model of hepatic steatosis, which overcomes inherent challenges of current models and provides insights into the metabolic rewiring associated with steatosis. Following induction of macrovesicular steatosis in hepatocyte-like cells using lactate, pyruvate, and octanoate (LPO), respirometry and transcriptomic analyses revealed compromised electron transport chain activity. C isotopic tracing studies revealed enhanced TCA cycle anaplerosis, with concomitant development of a compensatory purine nucleotide cycle shunt leading to excess generation of fumarate. This model of hepatic steatosis is reproducible, scalable, and overcomes the challenges of studying mitochondrial metabolism in currently available models.
非酒精性脂肪性肝病(NAFLD)是目前全球最普遍的肝脏疾病形式。该术语涵盖了一系列病理状态,从良性肝脂肪变性到非酒精性脂肪性肝炎,迄今为止,在实验室环境中对其进行建模一直具有挑战性。在此,我们展示了一种源自人多能干细胞(hPSC)的肝脂肪变性模型,该模型克服了当前模型的固有挑战,并为与脂肪变性相关的代谢重编程提供了见解。使用乳酸、丙酮酸和辛酸(LPO)在类肝细胞中诱导大泡性脂肪变性后,呼吸测定法和转录组分析显示电子传递链活性受损。碳同位素示踪研究显示三羧酸循环回补增强,同时伴随补偿性嘌呤核苷酸循环分流的发展,导致富马酸生成过多。这种肝脂肪变性模型具有可重复性、可扩展性,并克服了在现有模型中研究线粒体代谢的挑战。