Suppr超能文献

基于自然语言处理的在线癌症支持小组虚拟协同 facilitator:算法开发与验证研究方案。 注:这里“cofacilitator”不太明确准确的中文对应词,暂保留英文,也可根据实际语境灵活调整表述,比如“共同促进者”等 。

Natural Language Processing-Based Virtual Cofacilitator for Online Cancer Support Groups: Protocol for an Algorithm Development and Validation Study.

作者信息

Leung Yvonne W, Wouterloot Elise, Adikari Achini, Hirst Graeme, de Silva Daswin, Wong Jiahui, Bender Jacqueline L, Gancarz Mathew, Gratzer David, Alahakoon Damminda, Esplen Mary Jane

机构信息

de Souza Institute, University Health Network, Toronto, ON, Canada.

Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

出版信息

JMIR Res Protoc. 2021 Jan 7;10(1):e21453. doi: 10.2196/21453.

Abstract

BACKGROUND

Cancer and its treatment can significantly impact the short- and long-term psychological well-being of patients and families. Emotional distress and depressive symptomatology are often associated with poor treatment adherence, reduced quality of life, and higher mortality. Cancer support groups, especially those led by health care professionals, provide a safe place for participants to discuss fear, normalize stress reactions, share solidarity, and learn about effective strategies to build resilience and enhance coping. However, in-person support groups may not always be accessible to individuals; geographic distance is one of the barriers for access, and compromised physical condition (eg, fatigue, pain) is another. Emerging evidence supports the effectiveness of online support groups in reducing access barriers. Text-based and professional-led online support groups have been offered by Cancer Chat Canada. Participants join the group discussion using text in real time. However, therapist leaders report some challenges leading text-based online support groups in the absence of visual cues, particularly in tracking participant distress. With multiple participants typing at the same time, the nuances of the text messages or red flags for distress can sometimes be missed. Recent advances in artificial intelligence such as deep learning-based natural language processing offer potential solutions. This technology can be used to analyze online support group text data to track participants' expressed emotional distress, including fear, sadness, and hopelessness. Artificial intelligence allows session activities to be monitored in real time and alerts the therapist to participant disengagement.

OBJECTIVE

We aim to develop and evaluate an artificial intelligence-based cofacilitator prototype to track and monitor online support group participants' distress through real-time analysis of text-based messages posted during synchronous sessions.

METHODS

An artificial intelligence-based cofacilitator will be developed to identify participants who are at-risk for increased emotional distress and track participant engagement and in-session group cohesion levels, providing real-time alerts for therapist to follow-up; generate postsession participant profiles that contain discussion content keywords and emotion profiles for each session; and automatically suggest tailored resources to participants according to their needs. The study is designed to be conducted in 4 phases consisting of (1) development based on a subset of data and an existing natural language processing framework, (2) performance evaluation using human scoring, (3) beta testing, and (4) user experience evaluation.

RESULTS

This study received ethics approval in August 2019. Phase 1, development of an artificial intelligence-based cofacilitator, was completed in January 2020. As of December 2020, phase 2 is underway. The study is expected to be completed by September 2021.

CONCLUSIONS

An artificial intelligence-based cofacilitator offers a promising new mode of delivery of person-centered online support groups tailored to individual needs.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/21453.

摘要

背景

癌症及其治疗会对患者及其家庭的短期和长期心理健康产生重大影响。情绪困扰和抑郁症状往往与治疗依从性差、生活质量下降及更高的死亡率相关。癌症支持小组,尤其是由医护人员领导的小组,为参与者提供了一个安全的场所,让他们可以讨论恐惧、使应激反应正常化、分享团结互助之情,并学习建立复原力和增强应对能力的有效策略。然而,个人可能并不总能参加面对面的支持小组;地理距离是参与的障碍之一,身体状况不佳(如疲劳、疼痛)是另一个障碍。新出现的证据支持在线支持小组在减少参与障碍方面的有效性。加拿大癌症聊天组织提供了基于文本且由专业人员领导的在线支持小组。参与者通过文本实时加入小组讨论。然而,治疗师组长报告称,在没有视觉线索的情况下领导基于文本的在线支持小组存在一些挑战,尤其是在追踪参与者的困扰方面。由于多个参与者同时打字,有时会错过短信的细微差别或困扰的危险信号。人工智能的最新进展,如基于深度学习的自然语言处理,提供了潜在的解决方案。这项技术可用于分析在线支持小组的文本数据,以追踪参与者表达的情绪困扰,包括恐惧、悲伤和绝望。人工智能可以实时监测会议活动,并提醒治疗师注意参与者的退出情况。

目的

我们旨在开发并评估一个基于人工智能的共同促进者原型,通过实时分析同步会议期间发布的基于文本的消息,来追踪和监测在线支持小组参与者的困扰。

方法

将开发一个基于人工智能的共同促进者,以识别情绪困扰加剧风险较高的参与者,追踪参与者的参与度和会议期间的小组凝聚力水平,为治疗师提供实时提醒以便跟进;生成会后参与者档案,其中包含每个会议的讨论内容关键词和情绪档案;并根据参与者的需求自动为他们推荐量身定制的资源。该研究设计分4个阶段进行,包括(1)基于部分数据和现有的自然语言处理框架进行开发,(2)使用人工评分进行性能评估,(3)进行测试,以及(4)进行用户体验评估。

结果

本研究于2019年8月获得伦理批准。第一阶段,基于人工智能的共同促进者的开发于2020年1月完成。截至2020年12月,第二阶段正在进行中。该研究预计于2021年9月完成。

结论

基于人工智能的共同促进者为提供以个人需求为导向的在线支持小组提供了一种有前景的新方式。

国际注册报告识别号(IRRID):DERR1-10.2196/21453。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0406/7819785/56b89d235b2c/resprot_v10i1e21453_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验