Suppr超能文献

利用工程化 PCC 7942 进行生物密闭培养,从 CO 中光合生产 α-法呢烯。

Biocontainment of Engineered PCC 7942 for Photosynthetic Production of α-Farnesene from CO.

机构信息

Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.

BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.

出版信息

J Agric Food Chem. 2021 Jan 20;69(2):698-703. doi: 10.1021/acs.jafc.0c07020. Epub 2021 Jan 7.

Abstract

Biocontainment systems have been developed to mitigate the concerns regarding biosafety and environmental risk because of the possible escape of genetically modified organisms into the environment following large-scale outdoor cultivation. Here, we present a biocontainment system entailing genetically modified PCC 7942, also engineered for α-farnesene production using a de-evolutionary strategy. In this approach, the gene cluster encoding the β-carboxysome and the associated carbon concentrating mechanism (CCM) were deleted in the α-farnesene-producing cyanobacteria, resulting in no cell growth and no α-farnesene production at ambient CO concentrations (100% air bubbling). However, cell growth and α-farnesene production were detected in the CCM-deficient strains at high CO concentrations (5% CO [v/v], 10% CO [v/v]), albeit at levels lower than those of the parental control. To overcome this limitation, the overexpression of carbonic anhydrase and bicarbonate transporter genes in the CCM-deficient strains restored cell growth and the production level of α-farnesene (5.0 ± 0.6 mg/L) to that of the parental control. The production of α-farnesene in the later strains strictly depended on CO concentration in the photobioreactor and did not rely on a chemical induction process. Thus, next generation bio-solar cell factories could be promoted with the suggested biocontainment system.

摘要

生物安全系统已经被开发出来,以减轻由于大规模室外种植后遗传修饰生物体可能逃到环境中而产生的生物安全和环境风险方面的担忧。在这里,我们提出了一种生物安全系统,涉及到使用去进化策略生产α-法呢烯的遗传修饰 PCC 7942。在这种方法中,β-羧化体的基因簇和相关的碳浓缩机制(CCM)在产生α-法呢烯的蓝藻中被删除,导致在环境 CO 浓度(100%空气鼓泡)下没有细胞生长和没有α-法呢烯产生。然而,在高 CO 浓度(5% CO[v/v],10% CO[v/v])下,CCM 缺陷菌株中检测到细胞生长和α-法呢烯的产生,尽管其水平低于亲本对照。为了克服这一限制,在 CCM 缺陷菌株中过表达碳酸酐酶和碳酸氢盐转运蛋白基因,恢复了细胞生长和α-法呢烯的生产水平(5.0±0.6mg/L),达到亲本对照的水平。后期菌株中α-法呢烯的产生严格依赖于光生物反应器中的 CO 浓度,不依赖于化学诱导过程。因此,可以用建议的生物安全系统来促进下一代生物太阳能电池工厂的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验