Suppr超能文献

利用相关光谱法对两个独立的\(^{27}Al^{+}\)时钟进行寿命受限的询问。

Lifetime-Limited Interrogation of Two Independent ^{27}Al^{+} Clocks Using Correlation Spectroscopy.

作者信息

Clements Ethan R, Kim May E, Cui Kaifeng, Hankin Aaron M, Brewer Samuel M, Valencia Jose, Chen Jwo-Sy, Chou Chin-Wen, Leibrandt David R, Hume David B

机构信息

National Institute of Standards and Technology, Boulder, Colorado 80305, USA.

Department of Physics, University of Colorado, Boulder, Colorado 80305, USA.

出版信息

Phys Rev Lett. 2020 Dec 11;125(24):243602. doi: 10.1103/PhysRevLett.125.243602.

Abstract

Laser decoherence limits the stability of optical clocks by broadening the observable resonance linewidths and adding noise during the dead time between clock probes. Correlation spectroscopy avoids these limitations by measuring correlated atomic transitions between two ensembles, which provides a frequency difference measurement independent of laser noise. Here, we apply this technique to perform stability measurements between two independent clocks based on the ^{1}S_{0}↔^{3}P_{0} transition in ^{27}Al^{+}. By stabilizing the dominant sources of differential phase noise between the two clocks, we observe coherence between them during synchronous Ramsey interrogations as long as 8 s at a frequency of 1.12×10^{15}  Hz. The observed contrast in the correlation spectroscopy signal is consistent with the 20.6 s ^{3}P_{0} state lifetime and represents a measurement instability of (1.8±0.5)×10^{-16}/sqrt[τ/s] for averaging periods longer than the probe duration when dead time is negligible.

摘要

激光退相干通过展宽可观测的共振线宽并在时钟探测之间的死时间内添加噪声,限制了光钟的稳定性。关联光谱学通过测量两个原子系综之间的关联原子跃迁来避免这些限制,这提供了一种独立于激光噪声的频率差测量方法。在此,我们应用该技术对基于(^{27}Al^{+})中(^{1}S_{0}\leftrightarrow^{3}P_{0})跃迁的两个独立时钟进行稳定性测量。通过稳定两个时钟之间差分相位噪声的主要来源,我们在同步拉姆齐询问期间观察到它们之间长达8秒、频率为(1.12×10^{15})赫兹的相干性。在关联光谱信号中观察到的对比度与(20. — 6)秒的(^{3}P_{0})态寿命一致,并且当死时间可忽略不计时,对于平均周期长于探测持续时间的情况,代表了((1.8±0.5)×10^{-16}/\sqrt{τ/s})的测量不稳定性。

相似文献

1
Lifetime-Limited Interrogation of Two Independent ^{27}Al^{+} Clocks Using Correlation Spectroscopy.
Phys Rev Lett. 2020 Dec 11;125(24):243602. doi: 10.1103/PhysRevLett.125.243602.
2
Prospects and challenges for squeezing-enhanced optical atomic clocks.
Nat Commun. 2020 Nov 24;11(1):5955. doi: 10.1038/s41467-020-19403-7.
3
Differential clock comparisons with a multiplexed optical lattice clock.
Nature. 2022 Feb;602(7897):425-430. doi: 10.1038/s41586-021-04344-y. Epub 2022 Feb 16.
4
Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s.
Phys Rev Lett. 2012 Dec 7;109(23):230801. doi: 10.1103/PhysRevLett.109.230801. Epub 2012 Dec 5.
5
Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Apr;64(4):761-766. doi: 10.1109/TUFFC.2017.2649044. Epub 2017 Jan 5.
6
Exploring the Use of Ramsey-CPT Spectroscopy for a Microcell-Based Atomic Clock.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Oct;68(10):3249-3256. doi: 10.1109/TUFFC.2021.3085249. Epub 2021 Sep 27.
7
Suppressing Inhomogeneous Broadening in a Lutetium Multi-ion Optical Clock.
Phys Rev Lett. 2019 Aug 9;123(6):063201. doi: 10.1103/PhysRevLett.123.063201.
8
Composite laser-pulses spectroscopy for high-accuracy optical clocks: a review of recent progress and perspectives.
Rep Prog Phys. 2018 Sep;81(9):094401. doi: 10.1088/1361-6633/aac9e9. Epub 2018 Jun 4.
9
Ramsey Spectroscopy with Displaced Frequency Jumps.
Phys Rev Lett. 2019 Mar 22;122(11):113601. doi: 10.1103/PhysRevLett.122.113601.
10
Laser with 10 short-term instability for compact optically pumped cesium beam atomic clock.
Opt Express. 2020 Mar 2;28(5):6868-6880. doi: 10.1364/OE.381147.

引用本文的文献

1
Prospects of a thousand-ion Sn Coulomb-crystal clock with sub-10 inaccuracy.
Nat Commun. 2024 Jul 5;15(1):5663. doi: 10.1038/s41467-024-49241-w.
2
A lab-based test of the gravitational redshift with a miniature clock network.
Nat Commun. 2023 Aug 12;14(1):4886. doi: 10.1038/s41467-023-40629-8.
3
Lu clock comparison at the 10 level via correlation spectroscopy.
Sci Adv. 2023 May 3;9(18):eadg1971. doi: 10.1126/sciadv.adg1971.
4
An elementary quantum network of entangled optical atomic clocks.
Nature. 2022 Sep;609(7928):689-694. doi: 10.1038/s41586-022-05088-z. Epub 2022 Sep 7.
5
Differential clock comparisons with a multiplexed optical lattice clock.
Nature. 2022 Feb;602(7897):425-430. doi: 10.1038/s41586-021-04344-y. Epub 2022 Feb 16.
6
Prospects of a Pb^{2+} Ion Clock.
Phys Rev Lett. 2021 Jul 2;127(1):013201. doi: 10.1103/PhysRevLett.127.013201.

本文引用的文献

1
Half-minute-scale atomic coherence and high relative stability in a tweezer clock.
Nature. 2020 Dec;588(7838):408-413. doi: 10.1038/s41586-020-3009-y. Epub 2020 Dec 16.
2
Precision Measurement of Atomic Isotope Shifts Using a Two-Isotope Entangled State.
Phys Rev Lett. 2019 Nov 15;123(20):203001. doi: 10.1103/PhysRevLett.123.203001.
3
Suppressing Inhomogeneous Broadening in a Lutetium Multi-ion Optical Clock.
Phys Rev Lett. 2019 Aug 9;123(6):063201. doi: 10.1103/PhysRevLett.123.063201.
4
^{27}Al^{+} Quantum-Logic Clock with a Systematic Uncertainty below 10^{-18}.
Phys Rev Lett. 2019 Jul 19;123(3):033201. doi: 10.1103/PhysRevLett.123.033201.
5
Quadrupole Shift Cancellation Using Dynamic Decoupling.
Phys Rev Lett. 2019 Jun 7;122(22):223204. doi: 10.1103/PhysRevLett.122.223204.
6
Towards a transportable aluminium ion quantum logic optical clock.
Rev Sci Instrum. 2019 May;90(5):053204. doi: 10.1063/1.5090583.
7
Atomic clocks for geodesy.
Rep Prog Phys. 2018 Jun;81(6):064401. doi: 10.1088/1361-6633/aab409. Epub 2018 Apr 18.
8
Imaging Optical Frequencies with 100  μHz Precision and 1.1  μm Resolution.
Phys Rev Lett. 2018 Mar 9;120(10):103201. doi: 10.1103/PhysRevLett.120.103201.
9
1.5  μm Lasers with Sub-10 mHz Linewidth.
Phys Rev Lett. 2017 Jun 30;118(26):263202. doi: 10.1103/PhysRevLett.118.263202. Epub 2017 Jun 28.
10
Single-mode optical fiber for high-power, low-loss UV transmission.
Opt Express. 2014 Aug 11;22(16):19783-93. doi: 10.1364/OE.22.019783.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验