Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK.
Nature. 2022 Sep;609(7928):689-694. doi: 10.1038/s41586-022-05088-z. Epub 2022 Sep 7.
Optical atomic clocks are our most precise tools to measure time and frequency. Precision frequency comparisons between clocks in separate locations enable one to probe the space-time variation of fundamental constants and the properties of dark matter, to perform geodesy and to evaluate systematic clock shifts. Measurements on independent systems are limited by the standard quantum limit; measurements on entangled systems can surpass the standard quantum limit to reach the ultimate precision allowed by quantum theory-the Heisenberg limit. Although local entangling operations have demonstrated this enhancement at microscopic distances, comparisons between remote atomic clocks require the rapid generation of high-fidelity entanglement between systems that have no intrinsic interactions. Here we report the use of a photonic link to entangle two Sr ions separated by a macroscopic distance (approximately 2 m) to demonstrate an elementary quantum network of entangled optical clocks. For frequency comparisons between the ions, we find that entanglement reduces the measurement uncertainty by nearly [Formula: see text], the value predicted for the Heisenberg limit. Today's optical clocks are typically limited by dephasing of the probe laser; in this regime, we find that entanglement yields a factor of 2 reduction in the measurement uncertainty compared with conventional correlation spectroscopy techniques. We demonstrate this enhancement for the measurement of a frequency shift applied to one of the clocks. This two-node network could be extended to additional nodes, to other species of trapped particles or-through local operations-to larger entangled systems.
光学原子钟是我们测量时间和频率最精确的工具。在不同地点的时钟之间进行精确的频率比较,可以探测基本常数的时一空变化和暗物质的性质,进行大地测量,并评估系统时钟的偏移。独立系统的测量受到标准量子极限的限制;纠缠系统的测量可以超过标准量子极限,达到量子理论允许的最终精度——海森堡极限。虽然局部纠缠操作已经在微观距离上证明了这种增强,但远程原子钟之间的比较需要在没有固有相互作用的系统之间快速产生高保真纠缠。在这里,我们报告了使用光子链路将两个 Sr 离子纠缠在一起,它们之间的距离约为 2 米,从而展示了纠缠光学时钟的基本量子网络。对于离子之间的频率比较,我们发现纠缠将测量不确定性降低了近[公式:见文本],这是海森堡极限的预测值。目前的光学时钟通常受到探测激光退相的限制;在这种情况下,我们发现与传统的相关光谱技术相比,纠缠将测量不确定性降低了 2 倍。我们证明了这种增强在测量施加到一个时钟上的频率偏移时的有效性。这个双节点网络可以扩展到其他节点、其他被捕获粒子的种类,或者通过本地操作扩展到更大的纠缠系统。