Suppr超能文献

基于高光谱反射率的不同生长阶段植物叶片磷含量的识别。

Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance.

机构信息

Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, 20-290, Lublin, Poland.

Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, 20-031, Lublin, Poland.

出版信息

BMC Plant Biol. 2021 Jan 7;21(1):28. doi: 10.1186/s12870-020-02807-4.

Abstract

BACKGROUND

Modern agriculture strives to sustainably manage fertilizer for both economic and environmental reasons. The monitoring of any nutritional (phosphorus, nitrogen, potassium) deficiency in growing plants is a challenge for precision farming technology. A study was carried out on three species of popular crops, celery (Apium graveolens L., cv. Neon), sugar beet (Beta vulgaris L., cv. Tapir) and strawberry (Fragaria × ananassa Duchesne, cv. Honeoye), fertilized with four different doses of phosphorus (P) to deliver data for non-invasive detection of P content.

RESULTS

Data obtained via biochemical analysis of the chlorophyll and carotenoid contents in plant material showed that the strongest effect of P availability for plants was in the diverse total chlorophyll content in sugar beet and celery compared to that in strawberry, in which P affects a variety of carotenoid contents in leaves. The measurements performed using hyperspectral imaging, obtained in several different stages of plant development, were applied in a supervised classification experiment. A machine learning algorithm (Backpropagation Neural Network, Random Forest, Naive Bayes and Support Vector Machine) was developed to classify plants from four variants of P fertilization. The lowest prediction accuracy was obtained for the earliest measured stage of plant development. Statistical analyses showed correlations between leaf biochemical constituents, phosphorus fertilization and the mass of the leaf/roots of the plants.

CONCLUSIONS

Obtained results demonstrate that hyperspectral imaging combined with artificial intelligence methods has potential for non-invasive detection of non-homogenous phosphorus fertilization on crop levels.

摘要

背景

现代农业致力于从经济和环境两方面可持续地管理肥料。监测生长植物的任何营养(磷、氮、钾)缺乏情况是精准农业技术的一个挑战。本研究对三种常见作物(芹菜、糖甜菜和草莓)进行了研究,这些作物分别用四种不同剂量的磷进行施肥,以提供非侵入性检测磷含量的数据。

结果

通过对植物材料中叶绿素和类胡萝卜素含量的生化分析获得的数据表明,与草莓相比,磷对糖甜菜和芹菜中各种总叶绿素含量的影响最大,而磷会影响草莓叶片中多种类胡萝卜素的含量。在植物生长的多个不同阶段使用高光谱成像进行的测量被应用于监督分类实验中。开发了一种机器学习算法(反向传播神经网络、随机森林、朴素贝叶斯和支持向量机)来对来自四种不同磷施肥的植物进行分类。在测量的植物发育的最早阶段获得的预测准确性最低。统计分析表明叶片生化成分、磷施肥和植物叶片/根系质量之间存在相关性。

结论

研究结果表明,高光谱成像与人工智能方法相结合具有在作物水平上非侵入性检测不均匀磷施肥的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0e6/7792193/2ffe7574add1/12870_2020_2807_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验