Ji Wenjie, Luo Jie, Chu Hongchen, Zhou Xiaoxi, Meng Xiangdong, Peng Ruwen, Wang Mu, Lai Yun
National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
School of Physical Science and Technology, Institute of Theoretical and Applied Physics, Soochow University, Suzhou 215006, China.
Nanophotonics. 2023 Apr 25;12(11):2007-2017. doi: 10.1515/nanoph-2023-0085. eCollection 2023 May.
To prevent the crosstalk between adjacent waveguides in photonic integrated circuits, the minimum thickness of the cladding layers is around half a wavelength, which imposes a fundamental limitation to further integration and miniaturization of photonic circuits. Here, we reveal that epsilon-near-zero claddings, either isotropic or anisotropic, can break the above bottleneck by prohibiting the crosstalk for the modes with magnetic field polarized in the direction at a deep-subwavelength thickness (e.g., /30, is the free-space wavelength), therefore bestowing ultra-compact waveguide systems. The physical origin of this remarkable effect attributes to the divergent impedance of epsilon-near-zero materials far beyond those of dielectric or epsilon-negative claddings. Through full-wave simulations and microwave experiments, we have verified the effectiveness of the ultrathin epsilon-near-zero cladding in crosstalk prohibition. Our finding reveals the significant impact of impedance difference in waveguide designs and opens a promising route toward ultra-compact photonic chips.
为了防止光子集成电路中相邻波导之间的串扰,包层的最小厚度约为半个波长,这对光子电路的进一步集成和小型化构成了基本限制。在此,我们发现,无论是各向同性还是各向异性的近零介电常数包层,都可以通过在深亚波长厚度(例如,λ/30,λ为自由空间波长)下禁止磁场沿特定方向极化的模式产生串扰,从而打破上述瓶颈,进而实现超紧凑的波导系统。这种显著效应的物理根源在于近零介电常数材料的阻抗远高于电介质或负介电常数包层的阻抗。通过全波模拟和微波实验,我们验证了超薄近零介电常数包层在禁止串扰方面的有效性。我们的发现揭示了阻抗差异在波导设计中的重要影响,并为超紧凑光子芯片开辟了一条有前景的途径。