Suppr超能文献

针对新冠病毒的肽类和小分子抑制剂。

Peptide-like and small-molecule inhibitors against Covid-19.

机构信息

Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata, West Bengal, India.

Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata, West Bengal, India.

出版信息

J Biomol Struct Dyn. 2021 May;39(8):2904-2913. doi: 10.1080/07391102.2020.1757510. Epub 2020 May 6.

Abstract

Coronavirus disease strain (SARS-CoV-2) was discovered in 2019, and it is spreading very fast around the world causing the disease Covid-19. Currently, more than 1.6 million individuals are infected, and several thousand are dead across the globe because of Covid-19. Here, we utilized the approaches to identify possible protease inhibitors against SARS-CoV-2. Potential compounds were screened from the CHEMBL database, ZINC database, FDA approved drugs and molecules under clinical trials. Our study is based on 6Y2F and 6W63 co-crystallized structures available in the protein data bank (PDB). Seven hundred compounds from ZINC/CHEMBL databases and fourteen hundred compounds from drug-bank were selected based on positive interactions with the reported binding site. All the selected compounds were subjected to standard-precision (SP) and extra-precision (XP) mode of docking. Generated docked poses were carefully visualized for known interactions within the binding site. Molecular mechanics-generalized born surface area (MM-GBSA) calculations were performed to screen the best compounds based on docking scores and binding energy values. Molecular dynamics (MD) simulations were carried out on four selected compounds from the CHEMBL database to validate the stability and interactions. MD simulations were also performed on the PDB structure 6YF2F to understand the differences between screened molecules and co-crystallized ligand. We screened 300 potential compounds from various databases, and 66 potential compounds from FDA approved drugs. Cobicistat, ritonavir, lopinavir, and darunavir are in the top screened molecules from FDA approved drugs. The screened drugs and molecules may be helpful in fighting with SARS-CoV-2 after further studies.Communicated by Ramaswamy H. Sarma.

摘要

冠状病毒病株(SARS-CoV-2)于 2019 年被发现,其在全球范围内传播速度非常快,导致了 COVID-19 疾病。目前,全球已有超过 160 万人感染,数千人因 COVID-19 死亡。在这里,我们利用这些方法来鉴定针对 SARS-CoV-2 的可能蛋白酶抑制剂。从 CHEMBL 数据库、ZINC 数据库、FDA 批准的药物和临床试验中的分子中筛选潜在的化合物。我们的研究基于可在蛋白质数据库(PDB)中获得的 6Y2F 和 6W63 共结晶结构。根据与报道的结合位点的阳性相互作用,从 ZINC/CHEMBL 数据库中选择了 700 种化合物,从药物库中选择了 1400 种化合物。所有选定的化合物都经过了标准精度(SP)和额外精度(XP)模式的对接。对接产生的构象仔细观察了结合位点内的已知相互作用。根据对接评分和结合能值,进行了分子力学-广义 Born 表面面积(MM-GBSA)计算,以筛选最佳化合物。对 CHEMBL 数据库中的四种选定化合物进行了分子动力学(MD)模拟,以验证其稳定性和相互作用。还对 PDB 结构 6YF2F 进行了 MD 模拟,以了解筛选出的分子与共结晶配体之间的差异。我们从各种数据库中筛选了 300 种潜在的化合物,从 FDA 批准的药物中筛选了 66 种潜在的化合物。从 FDA 批准的药物中筛选出的前几种药物是考比司他、利托那韦、洛匹那韦和达芦那韦。筛选出的药物和分子可能有助于在进一步研究后对抗 SARS-CoV-2。由 Ramaswamy H. Sarma 传达。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ab/7212534/10b6c41f47c2/TBSD_A_1757510_UF0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验