Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
Institute for Molecular Bioscience, The University of Queensland, QLD, St Lucia, 4072, Australia.
Mol Neurobiol. 2021 May;58(5):2061-2074. doi: 10.1007/s12035-020-02238-0. Epub 2021 Jan 7.
Amyotrophic lateral sclerosis (ALS) is a form of motor neuron disease (MND) that is characterized by the progressive loss of motor neurons within the spinal cord, brainstem, and motor cortex. Although ALS clinically manifests as a heterogeneous disease, with varying disease onset and survival, a unifying feature is the presence of ubiquitinated cytoplasmic protein inclusion aggregates containing TDP-43. However, the precise mechanisms linking protein inclusions and aggregation to neuronal loss are currently poorly understood. Bimolecular fluorescence complementation (BiFC) takes advantage of the association of fluorophore fragments (non-fluorescent on their own) that are attached to an aggregation-prone protein of interest. Interaction of the proteins of interest allows for the fluorescent reporter protein to fold into its native state and emit a fluorescent signal. Here, we combined the power of BiFC with the advantages of the zebrafish system to validate, optimize, and visualize the formation of ALS-linked aggregates in real time in a vertebrate model. We further provide in vivo validation of the selectivity of this technique and demonstrate reduced spontaneous self-assembly of the non-fluorescent fragments in vivo by introducing a fluorophore mutation. Additionally, we report preliminary findings on the dynamic aggregation of the ALS-linked hallmark proteins Fus and TDP-43 in their corresponding nuclear and cytoplasmic compartments using BiFC. Overall, our data demonstrates the suitability of this BiFC approach to study and characterize ALS-linked aggregate formation in vivo. Importantly, the same principle can be applied in the context of other neurodegenerative diseases and has therefore critical implications to advance our understanding of pathologies that underlie aberrant protein aggregation.
肌萎缩侧索硬化症(ALS)是一种运动神经元疾病(MND),其特征是脊髓、脑干和运动皮层中的运动神经元进行性丧失。尽管 ALS 在临床上表现为异质性疾病,具有不同的发病和存活,但一个统一的特征是存在含有 TDP-43 的泛素化细胞质蛋白包涵体聚集。然而,将蛋白质包涵体和聚集与神经元丢失联系起来的精确机制目前还知之甚少。双分子荧光互补(BiFC)利用荧光团片段(单独时不发光)与感兴趣的易于聚集的蛋白质结合的优势。感兴趣的蛋白质的相互作用允许荧光报告蛋白折叠成其天然状态并发出荧光信号。在这里,我们将 BiFC 的功能与斑马鱼系统的优势相结合,在脊椎动物模型中实时验证、优化和可视化与 ALS 相关的聚集的形成。我们进一步提供了该技术选择性的体内验证,并通过引入荧光团突变证明了非荧光片段在体内自发组装的减少。此外,我们使用 BiFC 报告了与 ALS 相关的标志性蛋白 Fus 和 TDP-43 在其相应的核和细胞质隔室中的动态聚集的初步发现。总体而言,我们的数据证明了这种 BiFC 方法适用于研究和表征体内与 ALS 相关的聚集形成。重要的是,相同的原理可以应用于其他神经退行性疾病的背景下,因此对推进我们对异常蛋白质聚集基础下的病理学的理解具有关键意义。