Sun Peihao, Hastings J B, Ishikawa Daisuke, Baron Alfred Q R, Monaco Giulio
SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
Materials Dynamics Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.
Phys Rev Lett. 2020 Dec 18;125(25):256001. doi: 10.1103/PhysRevLett.125.256001.
Molecular-scale dynamics in sub- to supercritical water is studied with inelastic x-ray scattering and molecular dynamics simulations. The obtained longitudinal current correlation spectra can be decomposed into two main components: a low-frequency (LF), gaslike component and a high-frequency (HF) component arising from the O-O stretching mode between hydrogen-bonded molecules, reminiscent of the longitudinal acoustic mode in ambient water. With increasing temperature, the hydrogen-bond network diminishes and the spectral weight shifts from HF to LF, leading to a transition from liquid- to gaslike dynamics with rapid changes around the Widom line.
利用非弹性X射线散射和分子动力学模拟研究了亚临界和超临界水中的分子尺度动力学。所获得的纵向电流相关光谱可分解为两个主要成分:一个低频(LF)、类似气体的成分和一个高频(HF)成分,该高频成分源于氢键分子之间的O - O伸缩模式,让人联想到常压下水的纵向声学模式。随着温度升高,氢键网络减弱,光谱权重从高频向低频转移,导致从液态到气态动力学的转变,在维里线附近变化迅速。