Förster Mirko, Ukoji Nnanna, Sahle Christoph J, Niskanen Johannes, Sakrowski Robin, Surmeier Göran, Weis Christopher, Irifune Tetsuo, Imoto Sho, Yavas Hasan, Huotari Simo, Marx Dominik, Sternemann Christian, Tse John S
Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund 44227, Germany.
Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2403662121. doi: 10.1073/pnas.2403662121. Epub 2024 Sep 16.
Despite its ubiquitous nature, the atomic structure of water in its liquid state is still controversially debated. We use a combination of X-ray Raman scattering spectroscopy in conjunction with ab initio and path integral molecular dynamics simulations to study the local atomic and electronic structure of water under high pressure conditions. Systematically increasing fingerprints of non-hydrogen-bonded H[Formula: see text]O molecules in the first hydration shell are identified in the experimental and computational oxygen K-edge excitation spectra. This provides evidence for a compaction mechanism in terms of a continuous collapse of the second hydration shell with increasing pressure via generation of interstitial water within locally tetrahedral hydrogen-bonding environments.
尽管水的液态具有普遍性,但其液态的原子结构仍存在争议。我们结合X射线拉曼散射光谱以及从头算和路径积分分子动力学模拟,研究高压条件下水的局部原子和电子结构。在实验和计算得到的氧K边激发光谱中,首次发现了在第一水合层中非氢键合H₂O分子的指纹图谱随压力系统增加。这为一种压实机制提供了证据,即随着压力增加,第二水合层通过在局部四面体氢键环境中生成间隙水而持续坍塌。