Mauelshagen Katja, Schienbein Philipp, Kolling Inga, Schwaab Gerhard, Marx Dominik, Havenith Martina
Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany.
Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
Sci Adv. 2025 Mar 14;11(11):eadp8614. doi: 10.1126/sciadv.adp8614.
Supercritical water is widely present in Earth's crust and has a great potential as an environmentally friendly solvent. Water also serves as the prototype for directional hydrogen bonding at ambient conditions. However, the question of whether supercritical water is still hydrogen-bonded or how water molecules interact en route to the supercritical regime is a matter of controversial discussions. We present terahertz (THz) spectra, which directly probe the intermolecular interactions of water under these extreme conditions. While we spectroscopically detect the liquid-gas phase transition just below the critical point, THz spectra of the high-temperature gas phase are indistinguishable from those of supercritical water at the same density. The accompanying ab initio simulations provide the molecular underpinnings: The water-water contacts at supercritical conditions are essentially orientationally random.
超临界水广泛存在于地壳中,作为一种环境友好型溶剂具有巨大潜力。在环境条件下,水也是定向氢键作用的原型。然而,超临界水是否仍存在氢键作用,或者水分子在达到超临界状态的过程中是如何相互作用的,这是一个存在争议的讨论话题。我们展示了太赫兹(THz)光谱,它能直接探测在这些极端条件下水分子间的相互作用。虽然我们通过光谱检测到了略低于临界点处的液 - 气相转变,但高温气相的太赫兹光谱与相同密度的超临界水的光谱无法区分。伴随的从头算模拟提供了分子层面的依据:超临界条件下的水分子间接触本质上是取向随机的。