Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA.
Phys Rev Lett. 2020 Dec 18;125(25):250602. doi: 10.1103/PhysRevLett.125.250602.
A long period of linear growth in the spectral form factor provides a universal diagnostic of quantum chaos at intermediate times. By contrast, the behavior of the spectral form factor in disordered integrable many-body models is not well understood. Here we study the two-body Sachdev-Ye-Kitaev model and show that the spectral form factor features an exponential ramp, in sharp contrast to the linear ramp in chaotic models. We find a novel mechanism for this exponential ramp in terms of a high-dimensional manifold of saddle points in the path integral formulation of the spectral form factor. This manifold arises because the theory enjoys a large symmetry group. With finite nonintegrable interaction strength, these delicate symmetries reduce to a relative time translation, causing the exponential ramp to give way to a linear ramp.
在中间时间,谱形因子的线性增长为量子混沌提供了通用的诊断方法。相比之下,无序可积多体模型中谱形因子的行为还不太清楚。在这里,我们研究了双体 Sachdev-Ye-Kitaev 模型,并表明谱形因子具有指数斜坡,与混沌模型中的线性斜坡形成鲜明对比。我们从谱形因子路径积分公式的高维鞍点流形的角度找到了这种指数斜坡的新机制。这种流形的出现是因为该理论具有一个大型对称群。对于有限的非可积相互作用强度,这些微妙的对称性会简化为相对时间平移,从而导致指数斜坡变为线性斜坡。