Suppr超能文献

计算机视觉平台自动定位手术视频中的关键事件:记录腹腔镜胆囊切除术的安全性。

A Computer Vision Platform to Automatically Locate Critical Events in Surgical Videos: Documenting Safety in Laparoscopic Cholecystectomy.

机构信息

ICube, University of Strasbourg, CNRS, IHU Strasbourg, France.

Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.

出版信息

Ann Surg. 2021 Jul 1;274(1):e93-e95. doi: 10.1097/SLA.0000000000004736.

Abstract

OBJECTIVE

The aim of this study was to develop a computer vision platform to automatically locate critical events in surgical videos and provide short video clips documenting the critical view of safety (CVS) in laparoscopic cholecystectomy (LC).

BACKGROUND

Intraoperative events are typically documented through operator-dictated reports that do not always translate the operative reality. Surgical videos provide complete information on surgical procedures, but the burden associated with storing and manually analyzing full-length videos has so far limited their effective use.

METHODS

A computer vision platform named EndoDigest was developed and used to analyze LC videos. The mean absolute error (MAE) of the platform in automatically locating the manually annotated time of the cystic duct division in full-length videos was assessed. The relevance of the automatically extracted short video clips was evaluated by calculating the percentage of video clips in which the CVS was assessable by surgeons.

RESULTS

A total of 155 LC videos were analyzed: 55 of these videos were used to develop EndoDigest, whereas the remaining 100 were used to test it. The time of the cystic duct division was automatically located with a MAE of 62.8 ± 130.4 seconds (1.95% of full-length video duration). CVS was assessable in 91% of the 2.5 minutes long video clips automatically extracted from the considered test procedures.

CONCLUSIONS

Deep learning models for workflow analysis can be used to reliably locate critical events in surgical videos and document CVS in LC. Further studies are needed to assess the clinical impact of surgical data science solutions for safer laparoscopic cholecystectomy.

摘要

目的

本研究旨在开发一种计算机视觉平台,以自动定位手术视频中的关键事件,并提供记录腹腔镜胆囊切除术(LC)中关键安全视野(CVS)的短视频剪辑。

背景

术中事件通常通过手术操作者口述报告来记录,但这些报告并不总是能准确反映手术实际情况。手术视频提供了手术过程的完整信息,但由于存储和手动分析全长视频的负担,迄今为止,它们的有效使用受到了限制。

方法

开发了一个名为 EndoDigest 的计算机视觉平台,并用于分析 LC 视频。评估了该平台在自动定位全长视频中手动标记的胆囊管分离时间的平均绝对误差(MAE)。通过计算可由外科医生评估 CVS 的视频剪辑百分比来评估自动提取的短视频剪辑的相关性。

结果

共分析了 155 段 LC 视频:其中 55 段用于开发 EndoDigest,其余 100 段用于测试。胆囊管分离时间的自动定位平均绝对误差为 62.8±130.4 秒(全长视频时长的 1.95%)。从考虑的测试程序中自动提取的 2.5 分钟长视频剪辑中,91%可评估 CVS。

结论

可用于工作流程分析的深度学习模型可用于可靠地定位手术视频中的关键事件,并记录 LC 中的 CVS。需要进一步研究来评估手术数据科学解决方案对更安全的腹腔镜胆囊切除术的临床影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验