Suppr超能文献

RR-DnCNN v2.0:用于基于下采样的视频编码的增强型恢复-重建深度神经网络。

RR-DnCNN v2.0: Enhanced Restoration-Reconstruction Deep Neural Network for Down-Sampling-Based Video Coding.

作者信息

Ho Man M, Zhou Jinjia, He Gang

出版信息

IEEE Trans Image Process. 2021;30:1702-1715. doi: 10.1109/TIP.2020.3046872. Epub 2021 Jan 14.

Abstract

Integrating deep learning techniques into the video coding framework gains significant improvement compared to the standard compression techniques, especially applying super-resolution (up-sampling) to down-sampling based video coding as post-processing. However, besides up-sampling degradation, the various artifacts brought from compression make super-resolution problem more difficult to solve. The straightforward solution is to integrate the artifact removal techniques before super-resolution. However, some helpful features may be removed together, degrading the super-resolution performance. To address this problem, we proposed an end-to-end restoration-reconstruction deep neural network (RR-DnCNN) using the degradation-aware technique, which entirely solves degradation from compression and sub-sampling. Besides, we proved that the compression degradation produced by Random Access configuration is rich enough to cover other degradation types, such as Low Delay P and All Intra, for training. Since the straightforward network RR-DnCNN with many layers as a chain has poor learning capability suffering from the gradient vanishing problem, we redesign the network architecture to let reconstruction leverages the captured features from restoration using up-sampling skip connections. Our novel architecture is called restoration-reconstruction u-shaped deep neural network (RR-DnCNN v2.0). As a result, our RR-DnCNN v2.0 outperforms the previous works and can attain 17.02% BD-rate reduction on UHD resolution for all-intra anchored by the standard H.265/HEVC. The source code is available at https://minhmanho.github.io/rrdncnn/.

摘要

与标准压缩技术相比,将深度学习技术集成到视频编码框架中可带来显著改进,特别是将超分辨率(上采样)应用于基于下采样的视频编码作为后处理。然而,除了上采样退化外,压缩带来的各种伪像使超分辨率问题更难解决。直接的解决方案是在超分辨率之前集成伪像去除技术。然而,一些有用的特征可能会被一起去除,从而降低超分辨率性能。为了解决这个问题,我们提出了一种使用退化感知技术的端到端恢复-重建深度神经网络(RR-DnCNN),它完全解决了压缩和子采样带来的退化问题。此外,我们证明了随机访问配置产生的压缩退化足够丰富,足以涵盖其他退化类型,如低延迟P帧和全 Intra 帧,用于训练。由于具有许多层的链式直接网络RR-DnCNN学习能力较差,存在梯度消失问题,我们重新设计了网络架构,使重建能够利用通过上采样跳过连接从恢复中捕获的特征。我们的新颖架构称为恢复-重建U型深度神经网络(RR-DnCNN v2.0)。结果,我们的RR-DnCNN v2.0优于先前的工作,并且在以标准H.265/HEVC为锚点的全 Intra 模式下,在超高清分辨率上可实现17.02%的BD-rate降低。源代码可在https://minhmanho.github.io/rrdncnn/获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验