Suppr超能文献

基于管的具有缩放终端约束集的LPV系统输出反馈鲁棒模型预测控制

Tube-Based Output Feedback Robust MPC for LPV Systems With Scaled Terminal Constraint Sets.

作者信息

Ping Xubin, Yao Junying, Ding Baocang, Li Zhiwu

出版信息

IEEE Trans Cybern. 2022 Aug;52(8):7563-7576. doi: 10.1109/TCYB.2020.3041334. Epub 2022 Jul 19.

Abstract

This article provides a solution to tube-based output feedback robust model predictive control (RMPC) for discrete-time linear parameter varying (LPV) systems with bounded disturbances and noises. The proposed approach synthesizes an offline optimization problem to design a look-up table and an online tube-based output feedback RMPC with tightened constraints and scaled terminal constraint sets. In the offline optimization problem, a sequence of nested robust positively invariant (RPI) sets and robust control invariant (RCI) sets, respectively, for estimation errors and control errors is optimized and stored in the look-up table. In the online optimization problem, real-time control parameters are searched based on the bounds of time-varying estimation error sets. Considering the characteristics of the uncertain scheduling parameter in LPV systems, the online tube-based output feedback RMPC scheme adopts one-step nominal system prediction with scaled terminal constraint sets. The formulated simple and efficient online optimization problem with fewer decision variables and constraints has a lower online computational burden. Recursive feasibility of the optimization problem and robust stability of the controlled LPV system are guaranteed by ensuring that the nominal system converges to the terminal constraint set, and uncertain state trajectories are constrained within robust tubes with the center of the nominal system. A numerical example is given to verify the approach.

摘要

本文针对具有有界干扰和噪声的离散时间线性参数变化(LPV)系统,提出了一种基于管的输出反馈鲁棒模型预测控制(RMPC)解决方案。所提出的方法综合了一个离线优化问题,以设计一个查找表,并构建一个具有收紧约束和缩放终端约束集的基于管的在线输出反馈RMPC。在离线优化问题中,分别针对估计误差和控制误差,对一系列嵌套的鲁棒正不变(RPI)集和鲁棒控制不变(RCI)集进行优化,并存储在查找表中。在在线优化问题中,基于时变估计误差集的边界搜索实时控制参数。考虑到LPV系统中不确定调度参数的特性,基于管的在线输出反馈RMPC方案采用具有缩放终端约束集的一步标称系统预测。所制定的具有较少决策变量和约束的简单高效在线优化问题具有较低的在线计算负担。通过确保标称系统收敛到终端约束集,以及不确定状态轨迹被约束在以标称系统为中心的鲁棒管内,保证了优化问题的递归可行性和受控LPV系统的鲁棒稳定性。给出了一个数值例子来验证该方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验