Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America.
Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America.
Neurobiol Dis. 2021 Apr;151:105252. doi: 10.1016/j.nbd.2021.105252. Epub 2021 Jan 5.
Galactic cosmic radiation (GCR), composed of highly energetic and fully ionized atomic nuclei, produces diverse deleterious effects on the body. In researching the neurological risks of GCR exposures, including during human spaceflight, various ground-based single-ion GCR irradiation paradigms induce differential disruptions of cellular activity and overall behavior. However, it remains less clear how irradiation comprising a mix of multiple ions, more accurately recapitulating the space GCR environment, impacts the central nervous system. We therefore examined how mixed-ion GCR irradiation (two similar 5-6 beam combinations of protons, helium, oxygen, silicon and iron ions) influenced neuronal connectivity, functional generation of activity within neural circuits and cognitive behavior in mice. In electrophysiological recordings we find that space-relevant doses of mixed-ion GCR preferentially alter hippocampal inhibitory neurotransmission and produce related disruptions in the local field potentials of hippocampal oscillations. Such underlying perturbation in hippocampal network activity correspond with perturbed learning, memory and anxiety behavior.
银河宇宙辐射(GCR)由高能、完全电离的原子核组成,对人体产生多种有害影响。在研究 GCR 暴露的神经学风险时,包括在人类太空飞行期间,各种基于地面的单离子 GCR 辐照范例会导致细胞活动和整体行为的不同程度的中断。然而,对于更准确地再现空间 GCR 环境的混合多种离子的辐照如何影响中枢神经系统,目前仍不太清楚。因此,我们研究了混合离子 GCR 辐照(两种类似的 5-6 束质子、氦、氧、硅和铁离子的组合)如何影响小鼠的神经元连接、神经回路中活动的功能产生以及认知行为。在电生理记录中,我们发现与空间相关剂量的混合离子 GCR 优先改变海马抑制性神经传递,并在海马振荡的局部场电位中产生相关的中断。这种海马网络活动的潜在扰动与学习、记忆和焦虑行为的紊乱相对应。