Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA 19104, USA.
Department of Cell Biology, University of Texas Southwestern (UTSW) Medical Center, Dallas, TX 75390, USA.
Behav Brain Res. 2022 Feb 15;419:113677. doi: 10.1016/j.bbr.2021.113677. Epub 2021 Nov 21.
In long-term spaceflight, astronauts will face unique cognitive loads and social challenges which will be complicated by communication delays with Earth. It is important to understand the central nervous system (CNS) effects of deep spaceflight and the associated unavoidable exposure to galactic cosmic radiation (GCR). Rodent studies show single- or simple-particle combination exposure alters CNS endpoints, including hippocampal-dependent behavior. An even better Earth-based simulation of GCR is now available, consisting of a 33-beam (33-GCR) exposure. However, the effect of whole-body 33-GCR exposure on rodent behavior is unknown, and no 33-GCR CNS countermeasures have been tested. Here astronaut-age-equivalent (6mo-old) C57BL/6J male mice were exposed to 33-GCR (75cGy, a Mars mission dose). Pre-/during/post-Sham or 33-GCR exposure, mice received a diet containing a 'vehicle' formulation alone or with the antioxidant/anti-inflammatory compound CDDO-EA as a potential countermeasure. Behavioral testing beginning 4mo post-irradiation suggested radiation and diet did not affect measures of exploration/anxiety-like behaviors (open field, elevated plus maze) or recognition of a novel object. However, in 3-Chamber Social Interaction (3-CSI), CDDO-EA/33-GCR mice failed to spend more time exploring a holder containing a novel mouse vs. a novel object (empty holder), suggesting sociability deficits. Also, Vehicle/33-GCR and CDDO-EA/Sham mice failed to discriminate between a novel stranger vs. familiarized stranger mouse, suggesting blunted preference for social novelty. CDDO-EA given pre-/during/post-irradiation did not attenuate the 33-GCR-induced blunting of preference for social novelty. Future elucidation of the mechanisms underlying 33-GCR-induced blunting of preference for social novelty will improve risk analysis for astronauts which may in-turn improve countermeasures.
在长期的太空飞行中,宇航员将面临独特的认知负荷和社会挑战,而与地球的通信延迟将使这些挑战更加复杂。了解深空飞行对中枢神经系统(CNS)的影响以及随之而来的不可避免的银河宇宙辐射(GCR)暴露是很重要的。啮齿动物研究表明,单次或简单粒子组合暴露会改变 CNS 终点,包括海马依赖性行为。现在,一种更好的基于地球的 GCR 模拟已经可用,它由 33 束(33-GCR)照射组成。然而,全身 33-GCR 照射对啮齿动物行为的影响尚不清楚,也没有测试过任何 33-GCR CNS 对策。在这里,与宇航员年龄相当(6 个月大)的 C57BL/6J 雄性小鼠接受了 33-GCR(75cGy,火星任务剂量)照射。在假照射或 33-GCR 照射之前/期间/之后,小鼠接受了含有“载体”配方的饮食,或者单独或与抗氧化/抗炎化合物 CDDO-EA 一起作为潜在的对策。辐射后 4 个月开始的行为测试表明,辐射和饮食不会影响探索/焦虑样行为(旷场、高架十字迷宫)或对新物体的识别。然而,在 3 室社交互动(3-CSI)中,CDDO-EA/33-GCR 小鼠没有花费更多的时间去探索一个装有新老鼠的容器,而不是一个新的物体(空容器),这表明社交能力缺陷。此外,载体/33-GCR 和 CDDO-EA/假照射的小鼠不能区分新的陌生老鼠和熟悉的陌生老鼠,这表明它们对社交新颖性的偏好减弱。在照射前/期间/后给予 CDDO-EA 并没有减轻 33-GCR 引起的对社交新颖性偏好的减弱。对 33-GCR 引起的对社交新颖性偏好减弱的机制的进一步阐明将改善对宇航员的风险分析,这反过来又可能改善对策。