Department of Biology, University of Washington, Seattle, WA 98195, United States of America.
eScience Institute, University of Washington, Seattle, WA 98195, United States of America.
J Neural Eng. 2021 Mar 1;18(2). doi: 10.1088/1741-2552/abda0b.
. Advances in neural decoding have enabled brain-computer interfaces to perform increasingly complex and clinically-relevant tasks. However, such decoders are often tailored to specific participants, days, and recording sites, limiting their practical long-term usage. Therefore, a fundamental challenge is to develop neural decoders that can robustly train on pooled, multi-participant data and generalize to new participants.. We introduce a new decoder, HTNet, which uses a convolutional neural network with two innovations: (a) a Hilbert transform that computes spectral power at data-driven frequencies and (b) a layer that projects electrode-level data onto predefined brain regions. The projection layer critically enables applications with intracranial electrocorticography (ECoG), where electrode locations are not standardized and vary widely across participants. We trained HTNet to decode arm movements using pooled ECoG data from 11 of 12 participants and tested performance on unseen ECoG or electroencephalography (EEG) participants; these pretrained models were also subsequently fine-tuned to each test participant.. HTNet outperformed state-of-the-art decoders when tested on unseen participants, even when a different recording modality was used. By fine-tuning these generalized HTNet decoders, we achieved performance approaching the best tailored decoders with as few as 50 ECoG or 20 EEG events. We were also able to interpret HTNet's trained weights and demonstrate its ability to extract physiologically-relevant features.. By generalizing to new participants and recording modalities, robustly handling variations in electrode placement, and allowing participant-specific fine-tuning with minimal data, HTNet is applicable across a broader range of neural decoding applications compared to current state-of-the-art decoders.
神经解码技术的进步使得脑机接口能够执行越来越复杂和与临床相关的任务。然而,这些解码器通常是针对特定的参与者、特定的日子和特定的记录地点进行定制的,限制了它们在实际中的长期使用。因此,一个基本的挑战是开发能够在多参与者数据上进行稳健训练并能推广到新参与者的神经解码器。
我们引入了一种新的解码器 HTNet,它使用了具有两项创新的卷积神经网络:(a)希尔伯特变换,用于计算数据驱动频率的频谱功率;(b)一个将电极水平数据投影到预定义脑区的层。该投影层对于使用颅内脑电图(ECoG)的应用至关重要,因为电极位置在不同参与者之间不标准化且差异很大。我们使用 12 名参与者中的 11 名的 ECoG 数据来训练 HTNet 以解码手臂运动,并在未见过的 ECoG 或脑电图(EEG)参与者上测试性能;这些预训练模型随后也被微调到每个测试参与者。
HTNet 在未见过的参与者上的测试性能优于最先进的解码器,即使使用了不同的记录模式。通过微调这些广义的 HTNet 解码器,我们实现了接近最佳定制解码器的性能,只需 50 个 ECoG 或 20 个 EEG 事件。我们还能够解释 HTNet 的训练权重,并展示其提取生理相关特征的能力。
通过推广到新的参与者和记录模式,稳健地处理电极位置的变化,并允许在最少数据的情况下进行参与者特定的微调,HTNet 与当前最先进的解码器相比,更适用于更广泛的神经解码应用。