Suppr超能文献

人类高频γ波的时空动力学可区分自然行为状态。

Spatiotemporal dynamics of human high gamma discriminate naturalistic behavioral states.

机构信息

Department of Electrical Engineering, Kuwait University, Kuwait City, Kuwait.

Department of Electrical and Computer Engineering, UC San Diego, San Diego, California, United States of America.

出版信息

PLoS Comput Biol. 2022 Aug 8;18(8):e1010401. doi: 10.1371/journal.pcbi.1010401. eCollection 2022 Aug.

Abstract

In analyzing the neural correlates of naturalistic and unstructured behaviors, features of neural activity that are ignored in a trial-based experimental paradigm can be more fully studied and investigated. Here, we analyze neural activity from two patients using electrocorticography (ECoG) and stereo-electroencephalography (sEEG) recordings, and reveal that multiple neural signal characteristics exist that discriminate between unstructured and naturalistic behavioral states such as "engaging in dialogue" and "using electronics". Using the high gamma amplitude as an estimate of neuronal firing rate, we demonstrate that behavioral states in a naturalistic setting are discriminable based on long-term mean shifts, variance shifts, and differences in the specific neural activity's covariance structure. Both the rapid and slow changes in high gamma band activity separate unstructured behavioral states. We also use Gaussian process factor analysis (GPFA) to show the existence of salient spatiotemporal features with variable smoothness in time. Further, we demonstrate that both temporally smooth and stochastic spatiotemporal activity can be used to differentiate unstructured behavioral states. This is the first attempt to elucidate how different neural signal features contain information about behavioral states collected outside the conventional experimental paradigm.

摘要

在分析自然主义和非结构化行为的神经相关性时,可以更全面地研究和调查在基于试验的实验范式中被忽略的神经活动特征。在这里,我们使用脑电描记术(ECoG)和立体脑电图(sEEG)记录分析了两名患者的神经活动,并揭示了多种神经信号特征存在,可区分非结构化和自然主义行为状态,例如“进行对话”和“使用电子设备”。我们使用高伽马振幅作为神经元放电率的估计,证明基于长期平均变化、方差变化以及特定神经活动协方差结构的差异,在自然环境中行为状态是可区分的。高伽马波段活动的快速和缓慢变化都可以区分非结构化的行为状态。我们还使用高斯过程因子分析(GPFA)来显示具有时间上可变平滑度的显著时空特征的存在。此外,我们证明了时间上平滑和随机的时空活动都可以用于区分非结构化的行为状态。这是首次尝试阐明在传统实验范式之外收集的不同神经信号特征如何包含关于行为状态的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09db/9387937/6fabab20fec6/pcbi.1010401.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验