Suppr超能文献

基于头部 CT 扫描的迭代模型重建提高 ASPECTS 自动评估的可靠性。

Improved Reliability of Automated ASPECTS Evaluation Using Iterative Model Reconstruction from Head CT Scans.

机构信息

Department of Diagnostic and Interventional Neuroradiology, School of Medicine Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany.

出版信息

J Neuroimaging. 2021 Mar;31(2):341-347. doi: 10.1111/jon.12810. Epub 2021 Jan 9.

Abstract

BACKGROUND AND PURPOSE

Iterative model reconstruction (IMR) has shown to improve computed tomography (CT) image quality compared to hybrid iterative reconstruction (HIR). Alberta Stroke Program Early CT Score (ASPECTS) assessment in early stroke is particularly dependent on high-image quality. Purpose of this study was to investigate the reliability of ASPECTS assessed by humans and software based on HIR and IMR, respectively.

METHODS

Forty-seven consecutive patients with acute anterior circulation large vessel occlusions (LVOs) and successful endovascular thrombectomy were included. ASPECTS was assessed by three neuroradiologists (one attending, two residents) and by automated software in noncontrast axial CT with HIR (iDose4; 5 mm) and IMR (5 and 0.9 mm). Two expert neuroradiologists determined consensus ASPECTS reading using all available image data including MRI. Agreement between four raters (three humans, one software) and consensus were compared using square-weighted kappa (κ).

RESULTS

Human raters achieved moderate to almost perfect agreement (κ = .557-.845) with consensus reading. The attending showed almost perfect agreement for 5 mm HIR (κ  = .845), while residents had mostly substantial agreements without clear trends across reconstructions. Software had substantial to almost perfect agreement with consensus, increasing with IMR 5 and 0.9 mm slice thickness (κ  = .751, κ  = .777, and κ  = .814). Agreements inversely declined for these reconstructions for the attending (κ  = .845, κ  = .763, and κ  = .681).

CONCLUSIONS

Human and software rating showed good reliability of ASPECTS across different CT reconstructions. Human raters performed best with the reconstruction algorithms they had most experience with (HIR for the attending). Automated software benefits from higher resolution with better contrasts in IMR with 0.9 mm slice thickness.

摘要

背景与目的

与混合迭代重建(HIR)相比,迭代模型重建(IMR)已显示出可改善 CT 图像质量。早期脑卒中的 Alberta 卒中项目早期 CT 评分(ASPECTS)评估特别依赖于高质量的图像。本研究的目的是分别研究基于 HIR 和 IMR 的人类和软件评估 ASPECTS 的可靠性。

方法

连续纳入 47 例急性前循环大血管闭塞(LVOs)和成功血管内血栓切除术的患者。在非对比轴向 CT 上,使用 HIR(iDose4;5mm)和 IMR(5mm 和 0.9mm),由 3 名神经放射科医生(1 名主治医生,2 名住院医生)和自动软件评估 ASPECTS。使用所有可用的图像数据(包括 MRI),由 2 名专家神经放射科医生确定共识 ASPECTS 阅读。使用平方加权 Kappa(κ)比较四位评估者(三位人类,一位软件)和共识之间的一致性。

结果

人类评估者与共识阅读具有中度至几乎完美的一致性(κ=0.557-0.845)。主治医生对 5mm HIR 具有几乎完美的一致性(κ=0.845),而住院医生则主要是实质性的一致,没有明显的重建趋势。软件与共识具有实质性至几乎完美的一致性,随着 IMR 5mm 和 0.9mm 层厚的增加而增加(κ=0.751、κ=0.777 和 κ=0.814)。对于这些重建,主治医生的协议相反下降(κ=0.845、κ=0.763 和 κ=0.681)。

结论

不同 CT 重建中,人类和软件评估均显示出 ASPECTS 的良好可靠性。人类评估者在他们最熟悉的重建算法(主治医生的 HIR)方面表现最佳。自动软件受益于更高的分辨率和 IMR 中更好的对比度,0.9mm 层厚。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验