Suppr超能文献

平均驻留时间的类型。

Types of mean residence times.

作者信息

Wagner J G

机构信息

College of Pharmacy, Department of Pharmacology, University of Michigan, Ann Arbor 48109.

出版信息

Biopharm Drug Dispos. 1988 Jan-Feb;9(1):41-57. doi: 10.1002/bod.2510090106.

Abstract

Mean residence times (MRTs) have been classified into two main groups, namely system moment MRT [MRT(S,MO] and system matrix MRT [MRT(S,MA]. There are also MRTs of individual compartments [MRT(i)] such as central or plasma compartment, [MRT(P)], and tissue compartments and the MRT of an absorption site, [MRT(A)]. Much of the literature on MRTs does not clearly indicate which MRT is being discussed. MRT(S,MO) has been termed non-compartmental, but is really based on a structured model. There are really no model-independent MRTs or steady-state volumes of distribution. For the classical two-compartment open model with central compartment input, sampling and elimination MRT(S,MO) = MRT(S,MA) for a given set of microscopic rate constants. When elimination occurs from any but the central compartment then MRT(S,MO) is not equal to MRT(S,MA). For 'first-pass' drugs it is necessary to have a model where elimination occurs from a compartment different from the central and sampling compartment. Many of the methods of estimating MRTs which have been reported in the literature to date are reviewed and some generalizations are drawn. Some uses of MRTs are indicated. These uses involve both amounts of drug in the body as well as concentrations. The relationship between MRT(S,MO) and MRT(S,MA) for the Rowland two-compartment open model with peripheral compartment elimination is: MRT(S,MA)--MRT(S,MO) = 1/(k20 + k21). Thus the system matrix MRT is always larger than the system moment MRT for this linear model, which is most useful for 'first-pass' drugs. A general equation for MRT(S,MA) of all three two-compartment open models with input into either of the compartments is (lambda 1 + lambda 2 - ki0)/lambda 1 lambda 2 where i is the compartment (i = 1 or 2) into which input occurs.

摘要

平均驻留时间(MRTs)已被分为两大类,即系统矩平均驻留时间[MRT(S,MO)]和系统矩阵平均驻留时间[MRT(S,MA)]。也存在各个隔室的平均驻留时间[MRT(i)],如中央或血浆隔室的[MRT(P)]、组织隔室的,以及吸收部位的平均驻留时间[MRT(A)]。许多关于平均驻留时间的文献并未明确指出所讨论的是哪种平均驻留时间。MRT(S,MO)被称为非房室的,但实际上是基于一个结构化模型。实际上不存在与模型无关的平均驻留时间或稳态分布容积。对于具有中央隔室输入、采样和消除的经典二室开放模型,对于给定的一组微观速率常数,MRT(S,MO)=MRT(S,MA)。当从除中央隔室之外的任何隔室发生消除时,那么MRT(S,MO)不等于MRT(S,MA)。对于“首过”药物,有必要拥有一个消除发生在与中央和采样隔室不同的隔室的模型。对迄今为止文献中报道的许多估计平均驻留时间的方法进行了综述,并得出了一些概括性结论。指出了平均驻留时间的一些用途。这些用途涉及体内药物的量以及浓度。具有外周隔室消除的罗兰二室开放模型的MRT(S,MO)与MRT(S,MA)之间的关系为:MRT(S,MA)-MRT(S,MO)=1/(k20 + k21)。因此,对于这个线性模型,系统矩阵平均驻留时间总是大于系统矩平均驻留时间,这对于“首过”药物最为有用。所有三种输入到任意一个隔室的二室开放模型的MRT(S,MA)的通用方程为(lambda 1 + lambda 2 - ki0)/lambda 1 lambda 2,其中i是输入发生的隔室(i = 1或2)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验