Suppr超能文献

使用预训练深度卷积神经网络和迁移学习检测癫痫发作。

Detection of Epileptic Seizure Using Pretrained Deep Convolutional Neural Network and Transfer Learning.

机构信息

Department of Electrical and Energy, Kayseri University, Kayseri, Turkey.

Departments of Biomedical Informatics and Neuroscience, The Ohio State University, Columbus, Ohio, USA,

出版信息

Eur Neurol. 2020;83(6):602-614. doi: 10.1159/000512985. Epub 2021 Jan 8.

Abstract

INTRODUCTION

The diagnosis of epilepsy takes a certain process, depending entirely on the attending physician. However, the human factor may cause erroneous diagnosis in the analysis of the EEG signal. In the past 2 decades, many advanced signal processing and machine learning methods have been developed for the detection of epileptic seizures. However, many of these methods require large data sets and complex operations.

METHODS

In this study, an end-to-end machine learning model is presented for detection of epileptic seizure using the pretrained deep two-dimensional convolutional neural network (CNN) and the concept of transfer learning. The EEG signal is converted directly into visual data with a spectrogram and used directly as input data.

RESULTS

The authors analyzed the results of the training of the proposed pretrained AlexNet CNN model. Both binary and ternary classifications were performed without any extra procedure such as feature extraction. By performing data set creation from short-term spectrogram graphic images, the authors were able to achieve 100% accuracy for binary classification for epileptic seizure detection and 100% for ternary classification.

DISCUSSION/CONCLUSION: The proposed automatic identification and classification model can help in the early diagnosis of epilepsy, thus providing the opportunity for effective early treatment.

摘要

简介

癫痫的诊断需要一定的过程,完全取决于主治医生。然而,在分析脑电图信号时,人为因素可能会导致误诊。在过去的 20 年中,已经开发出许多先进的信号处理和机器学习方法来检测癫痫发作。但是,其中许多方法需要大数据集和复杂的操作。

方法

在这项研究中,提出了一种端到端的机器学习模型,用于使用预先训练的二维深度卷积神经网络(CNN)和迁移学习的概念检测癫痫发作。脑电图信号直接转换为具有声谱图的可视数据,并直接用作输入数据。

结果

作者分析了所提出的预先训练的 AlexNet CNN 模型的训练结果。无需任何额外的步骤(例如特征提取)即可执行二进制和三进制分类。通过从短期声谱图图形图像创建数据集,作者能够实现 100%的二进制分类用于癫痫发作检测的准确率和 100%的三进制分类准确率。

讨论/结论:所提出的自动识别和分类模型有助于癫痫的早期诊断,从而为有效早期治疗提供机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验