Suppr超能文献

使用卷积神经网络的深度主动学习用于上颌窦病变的自动分割

Deep Active Learning for Automatic Segmentation of Maxillary Sinus Lesions Using a Convolutional Neural Network.

作者信息

Jung Seok-Ki, Lim Ho-Kyung, Lee Seungjun, Cho Yongwon, Song In-Seok

机构信息

Department of Orthodontics, Korea University Guro Hospital, Seoul 08308, Korea.

Department of Oral and Maxillofacial Surgery, Korea University Guro Hospital, Seoul 08308, Korea.

出版信息

Diagnostics (Basel). 2021 Apr 12;11(4):688. doi: 10.3390/diagnostics11040688.

Abstract

The aim of this study was to segment the maxillary sinus into the maxillary bone, air, and lesion, and to evaluate its accuracy by comparing and analyzing the results performed by the experts. We randomly selected 83 cases of deep active learning. Our active learning framework consists of three steps. This framework adds new volumes per step to improve the performance of the model with limited training datasets, while inferring automatically using the model trained in the previous step. We determined the effect of active learning on cone-beam computed tomography (CBCT) volumes of dental with our customized 3D nnU-Net in all three steps. The dice similarity coefficients (DSCs) at each stage of air were 0.920 ± 0.17, 0.925 ± 0.16, and 0.930 ± 0.16, respectively. The DSCs at each stage of the lesion were 0.770 ± 0.18, 0.750 ± 0.19, and 0.760 ± 0.18, respectively. The time consumed by the convolutional neural network (CNN) assisted and manually modified segmentation decreased by approximately 493.2 s for 30 scans in the second step, and by approximately 362.7 s for 76 scans in the last step. In conclusion, this study demonstrates that a deep active learning framework can alleviate annotation efforts and costs by efficiently training on limited CBCT datasets.

摘要

本研究的目的是将上颌窦分割为上颌骨、空气和病变部分,并通过比较和分析专家的操作结果来评估其准确性。我们随机选择了83例深度主动学习病例。我们的主动学习框架包括三个步骤。该框架每一步都添加新的体积数据,以在有限的训练数据集上提高模型的性能,同时使用上一步训练的模型进行自动推理。我们在所有三个步骤中使用定制的3D nnU-Net确定了主动学习对牙科锥形束计算机断层扫描(CBCT)体积的影响。空气部分在每个阶段的骰子相似系数(DSC)分别为0.920±0.17、0.925±0.16和0.930±0.16。病变部分在每个阶段的DSC分别为0.770±0.18、0.750±0.19和0.760±0.18。在第二步中,30次扫描的卷积神经网络(CNN)辅助和手动修改分割所消耗的时间减少了约493.2秒,在最后一步中,76次扫描的时间减少了约362.7秒。总之,本研究表明,深度主动学习框架可以通过在有限的CBCT数据集上进行高效训练来减轻标注工作和成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de60/8070431/46e9f74ac03d/diagnostics-11-00688-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验