Department of Computer Science and EngineeringUniversity of RajshahiRajshahi6205Bangladesh.
Faculty of Medicine, School of PsychiatryUniversity of New South WalesSydneyNSW2052Australia.
IEEE J Transl Eng Health Med. 2021 Jan 11;9:2000112. doi: 10.1109/JTEHM.2021.3050925. eCollection 2021.
BACKGROUND: Diagnosing epileptic seizures using electroencephalogram (EEG) in combination with deep learning computational methods has received much attention in recent years. However, to date, deep learning techniques in seizure detection have not been effectively harnessed due to sub-optimal classifier design and improper representation of the time-domain signal. METHODS: In this study, we focused on designing and evaluating deep convolutional neural network-based classifiers for seizure detection. Signal-to-image conversion methods are proposed to convert time-domain EEG signal to a time-frequency represented image to prepare the input data for classification. We proposed and evaluated three classification methods comprising of five classifiers to determine which is more accurate for seizure detection. Accuracy data were then compared to previous studies of the same dataset. RESULTS: We found our proposed model and signal-to-image conversion method outperformed all previous studies in the most cases. The proposed FT-VGG16 classifier achieved the highest average classification accuracy of 99.21%. In addition, the Shapley Additive exPlanations (SHAP) analysis approach was employed to uncover the feature frequencies in the EEG that contribute most to improved classification accuracy. To the best of our knowledge, this is the first study to compute the contribution of frequency components to target seizure classification; thus allowing the identification of distinct seizure-related EEG frequency components compared to normal EEG measures. CONCLUSION: Thus our developed deep convolutional neural network models are useful to detect seizures and characteristic frequencies using EEG data collected from the patients and this model could be clinically applicable for the automated seizures detection.
背景:近年来,结合深度学习计算方法使用脑电图(EEG)诊断癫痫发作受到了广泛关注。然而,到目前为止,由于分类器设计不理想和对时域信号的表示不当,深度学习技术在癫痫检测中的应用尚未得到有效利用。
方法:在这项研究中,我们专注于设计和评估基于深度卷积神经网络的癫痫发作检测分类器。提出了信号到图像转换方法,将时域 EEG 信号转换为时频表示的图像,为分类准备输入数据。我们提出并评估了三种分类方法,包括五个分类器,以确定哪种方法更适合癫痫检测。然后将准确性数据与同一数据集的先前研究进行比较。
结果:我们发现,在大多数情况下,我们提出的模型和信号到图像转换方法优于所有先前的研究。所提出的 FT-VGG16 分类器实现了最高平均分类准确率为 99.21%。此外,还采用 Shapley Additive exPlanations (SHAP) 分析方法来揭示 EEG 中对提高分类准确性贡献最大的特征频率。据我们所知,这是第一项计算频率分量对目标癫痫分类贡献的研究;从而可以识别与正常 EEG 测量相比具有独特癫痫相关的 EEG 频率分量。
结论:因此,我们开发的深度卷积神经网络模型可用于使用从患者收集的 EEG 数据检测癫痫发作和特征频率,并且该模型可在临床中用于自动癫痫检测。
BMC Med Inform Decis Mak. 2018-12-7
Comput Methods Programs Biomed. 2023-10
Comput Math Methods Med. 2022
Comput Methods Programs Biomed. 2005-5
Clin Neurophysiol. 2018-11-15
J Neurosci Methods. 2019-8-10
BMC Med Inform Decis Mak. 2023-5-22
Bioengineering (Basel). 2025-1-24
IEEE J Transl Eng Health Med. 2024
Sensors (Basel). 2024-7-29
NPP Digit Psychiatry Neurosci. 2024
Front Neurosci. 2024-5-3
Brain Sci. 2024-3-25
Comput Math Methods Med. 2020
Annu Int Conf IEEE Eng Med Biol Soc. 2019-7
Neural Netw. 2019-3-11
Front Neuroinform. 2018-12-10
Clin Neurophysiol. 2018-11-15