文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于深度卷积神经网络的癫痫脑电(EEG)信号发作检测及特征频率提取方法。

A Deep Convolutional Neural Network Method to Detect Seizures and Characteristic Frequencies Using Epileptic Electroencephalogram (EEG) Data.

机构信息

Department of Computer Science and EngineeringUniversity of RajshahiRajshahi6205Bangladesh.

Faculty of Medicine, School of PsychiatryUniversity of New South WalesSydneyNSW2052Australia.

出版信息

IEEE J Transl Eng Health Med. 2021 Jan 11;9:2000112. doi: 10.1109/JTEHM.2021.3050925. eCollection 2021.


DOI:10.1109/JTEHM.2021.3050925
PMID:33542859
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7851059/
Abstract

BACKGROUND: Diagnosing epileptic seizures using electroencephalogram (EEG) in combination with deep learning computational methods has received much attention in recent years. However, to date, deep learning techniques in seizure detection have not been effectively harnessed due to sub-optimal classifier design and improper representation of the time-domain signal. METHODS: In this study, we focused on designing and evaluating deep convolutional neural network-based classifiers for seizure detection. Signal-to-image conversion methods are proposed to convert time-domain EEG signal to a time-frequency represented image to prepare the input data for classification. We proposed and evaluated three classification methods comprising of five classifiers to determine which is more accurate for seizure detection. Accuracy data were then compared to previous studies of the same dataset. RESULTS: We found our proposed model and signal-to-image conversion method outperformed all previous studies in the most cases. The proposed FT-VGG16 classifier achieved the highest average classification accuracy of 99.21%. In addition, the Shapley Additive exPlanations (SHAP) analysis approach was employed to uncover the feature frequencies in the EEG that contribute most to improved classification accuracy. To the best of our knowledge, this is the first study to compute the contribution of frequency components to target seizure classification; thus allowing the identification of distinct seizure-related EEG frequency components compared to normal EEG measures. CONCLUSION: Thus our developed deep convolutional neural network models are useful to detect seizures and characteristic frequencies using EEG data collected from the patients and this model could be clinically applicable for the automated seizures detection.

摘要

背景:近年来,结合深度学习计算方法使用脑电图(EEG)诊断癫痫发作受到了广泛关注。然而,到目前为止,由于分类器设计不理想和对时域信号的表示不当,深度学习技术在癫痫检测中的应用尚未得到有效利用。

方法:在这项研究中,我们专注于设计和评估基于深度卷积神经网络的癫痫发作检测分类器。提出了信号到图像转换方法,将时域 EEG 信号转换为时频表示的图像,为分类准备输入数据。我们提出并评估了三种分类方法,包括五个分类器,以确定哪种方法更适合癫痫检测。然后将准确性数据与同一数据集的先前研究进行比较。

结果:我们发现,在大多数情况下,我们提出的模型和信号到图像转换方法优于所有先前的研究。所提出的 FT-VGG16 分类器实现了最高平均分类准确率为 99.21%。此外,还采用 Shapley Additive exPlanations (SHAP) 分析方法来揭示 EEG 中对提高分类准确性贡献最大的特征频率。据我们所知,这是第一项计算频率分量对目标癫痫分类贡献的研究;从而可以识别与正常 EEG 测量相比具有独特癫痫相关的 EEG 频率分量。

结论:因此,我们开发的深度卷积神经网络模型可用于使用从患者收集的 EEG 数据检测癫痫发作和特征频率,并且该模型可在临床中用于自动癫痫检测。

相似文献

[1]
A Deep Convolutional Neural Network Method to Detect Seizures and Characteristic Frequencies Using Epileptic Electroencephalogram (EEG) Data.

IEEE J Transl Eng Health Med. 2021

[2]
Automatic seizure detection using three-dimensional CNN based on multi-channel EEG.

BMC Med Inform Decis Mak. 2018-12-7

[3]
Automatic seizure detection and classification using super-resolution superlet transform and deep neural network -A preprocessing-less method.

Comput Methods Programs Biomed. 2023-10

[4]
Epileptic Seizure Detection with Hybrid Time-Frequency EEG Input: A Deep Learning Approach.

Comput Math Methods Med. 2022

[5]
Classification of EEG signals using neural network and logistic regression.

Comput Methods Programs Biomed. 2005-5

[6]
Optimized deep neural network architecture for robust detection of epileptic seizures using EEG signals.

Clin Neurophysiol. 2018-11-15

[7]
Detection of Epileptic Seizure Using Pretrained Deep Convolutional Neural Network and Transfer Learning.

Eur Neurol. 2020

[8]
A medium-weight deep convolutional neural network-based approach for onset epileptic seizures classification in EEG signals.

Brain Behav. 2022-11

[9]
Early prediction of epileptic seizures using a long-term recurrent convolutional network.

J Neurosci Methods. 2019-8-10

[10]
An automated detection of epileptic seizures EEG using CNN classifier based on feature fusion with high accuracy.

BMC Med Inform Decis Mak. 2023-5-22

引用本文的文献

[1]
Adaptive weighted dual MAML: Proposing a novel method for the automated diagnosis of partial sleep deprivation.

PLoS One. 2025-6-13

[2]
Revolutionizing sleep disorder diagnosis: A Multi-Task learning approach optimized with genetic and Q-Learning techniques.

Sci Rep. 2025-5-13

[3]
Predicting Epileptic Seizures Using EfficientNet-B0 and SVMs: A Deep Learning Methodology for EEG Analysis.

Bioengineering (Basel). 2025-1-24

[4]
Simultaneous EEG-fNIRS Data Classification Through Selective Channel Representation and Spectrogram Imaging.

IEEE J Transl Eng Health Med. 2024

[5]
Latent Prototype-Based Clustering: A Novel Exploratory Electroencephalography Analysis Approach.

Sensors (Basel). 2024-7-29

[6]
Neural activity during inhibitory control predicts suicidal ideation with machine learning.

NPP Digit Psychiatry Neurosci. 2024

[7]
Epilepsy detection based on multi-head self-attention mechanism.

PLoS One. 2024

[8]
Data leakage in deep learning studies of translational EEG.

Front Neurosci. 2024-5-3

[9]
Evaluation of the Relation between Ictal EEG Features and XAI Explanations.

Brain Sci. 2024-3-25

[10]
Risk of data leakage in estimating the diagnostic performance of a deep-learning-based computer-aided system for psychiatric disorders.

Sci Rep. 2023-10-3

本文引用的文献

[1]
A Novel Deep Neural Network for Robust Detection of Seizures Using EEG Signals.

Comput Math Methods Med. 2020

[2]
EEG based multi-class seizure type classification using convolutional neural network and transfer learning.

Neural Netw. 2020-1-25

[3]
Automatic detection of epileptic seizure based on approximate entropy, recurrence quantification analysis and convolutional neural networks.

Artif Intell Med. 2019-9-7

[4]
A convolutional neural network based framework for classification of seizure types.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

[5]
Epilepsy Detection by Using Scalogram Based Convolutional Neural Network from EEG Signals.

Brain Sci. 2019-5-17

[6]
Early Alzheimer's disease diagnosis based on EEG spectral images using deep learning.

Neural Netw. 2019-3-11

[7]
Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images.

Neuroimage Clin. 2019-1-22

[8]
Epileptic Seizure Detection Based on EEG Signals and CNN.

Front Neuroinform. 2018-12-10

[9]
Optimized deep neural network architecture for robust detection of epileptic seizures using EEG signals.

Clin Neurophysiol. 2018-11-15

[10]
Clinically applicable deep learning for diagnosis and referral in retinal disease.

Nat Med. 2018-8-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索