Suppr超能文献

无脊椎动物和脊椎动物大脑中持续复合场电位的比较。

Comparison of ongoing compound field potentials in the brains of invertebrates and vertebrates.

作者信息

Bullock T H, Basar E

机构信息

Neurobiology Unit, Scripps Institution of Oceanography, La Jolla, CA.

出版信息

Brain Res. 1988 Jan-Mar;472(1):57-75. doi: 10.1016/0165-0173(88)90005-7.

Abstract

(1) Ongoing compound field potential fluctuations of higher brain centers (the micro-EEG of some authors) are considered as a biological phenomenon, a sign of the activity in the organized assemblage of cells. Such activity has been compared in several taxa with quite different brain structure to look for possible evolution in the form of the field potentials and for possible explanations of differences and similarities. (2) Recordings were made with semimicroelectrodes in the neuropile of the cerebral ganglion of the mollusc, Aplysia, with comparative observations on Helix, and the arthropods Limulus, Melanoplus, and Cambarus, and in or on the cerebral cortex and optic tectum of rays, cats and rabbits, with comparative observations on sharks, bony fish, turtles and geckos in unstimulated resting or generalized arousal states. Manipulations of state did not alter the main findings. (3) Power spectra in the cerebral ganglia of various higher invertebrates are similar; activity is fast and spikey (with the exception of Octopus). Integrated energy above 50 Hz exceeds that from 2-50 Hz and falls slowly with frequency; in Aplysia the power spectrum falls less than 10 dB between 10 and 300 Hz. In vertebrates from fish to mammals activity is similar in being mainly slow (less than 40 Hz); it commonly falls greater than 20 dB between 10 and 50 Hz. (4) Amplitude is low in invertebrates and lower vertebrates. RMS voltage in Aplysia (3-300 Hz, reference electrode remote) is typically less than 10 microV; in the ray optic tectum less than 25 microV (2-50 Hz); in the dorsal cortex of the gecko less than 30 microV, in the cat cortex greater than 85 microV. In the vertebrates amplitude does not change greatly with small shifts in electrode position, as it does in invertebrates. (5) Coherence decline with distance, measured tangentially at different electrode separations in the millimeter range, is used as an estimator of synchrony. Averaged coherence between loci 1 mm apart is negligible in Aplysia in any band from 3 to 100 Hz; in the ray tectum it is low, 0.25-0.5 between 3 and 16 Hz. In the turtle dorsal pallium it is higher, at 2 mm, 0.6-0.75 in this band. In the rabbit cortex coherence is even higher, typically greater than 0.7 at 1 mm, and greater than 0.3 at 4 mm in this band. (6) Band-pass filtered electrograms, ca. one octave wide, in all species show constant waxing and waning in each band; amplitude is not maintained even for a second. (ABSTRACT TRUNCATED AT 400 WORDS)

摘要

(1) 高等脑中枢持续的复合场电位波动(一些作者所称的微脑电图)被视为一种生物现象,是细胞有组织集合体活动的标志。在几个具有截然不同脑结构的分类群中对这种活动进行了比较,以寻找场电位形式可能的进化以及差异和相似性的可能解释。(2) 使用半微电极在软体动物海兔的脑神经节神经纤维网中进行记录,并对蛞蝓、节肢动物鲎、美洲蚱蜢和螯虾进行比较观察,同时在处于未受刺激的静息或全身性觉醒状态的鳐鱼、猫和兔子的大脑皮层和视顶盖内或其上进行记录,并对鲨鱼、硬骨鱼、海龟和壁虎进行比较观察。状态的改变并未改变主要发现。(3) 各种高等无脊椎动物脑神经节中的功率谱相似;活动快速且呈尖峰状(章鱼除外)。50赫兹以上的积分能量超过2至50赫兹的能量,且随频率缓慢下降;在海兔中,功率谱在10至300赫兹之间下降不到10分贝。在从鱼类到哺乳动物的脊椎动物中,活动主要相似之处在于缓慢(低于40赫兹);在10至50赫兹之间通常下降超过20分贝。(4) 无脊椎动物和低等脊椎动物的振幅较低。海兔中的均方根电压(3至300赫兹,参考电极较远)通常小于10微伏;在鳐鱼视顶盖中小于25微伏(2至50赫兹);在壁虎背侧皮层中小于30微伏,在猫皮层中大于85微伏。在脊椎动物中,振幅不会像在无脊椎动物中那样随着电极位置的微小变化而大幅改变。(5) 在毫米范围内不同电极间距处沿切线方向测量的相干性随距离下降,被用作同步性的估计指标。在海兔中,相距1毫米的位点之间在3至100赫兹的任何频段内平均相干性可忽略不计;在鳐鱼视顶盖中较低,在3至16赫兹之间为0.25至0.5。在海龟背侧大脑皮层中较高,在2毫米处,该频段内为0.6至0.75。在兔子皮层中相干性更高,在该频段内,通常在1毫米处大于0.7,在4毫米处大于0.3。(6) 所有物种中约一个倍频程宽的带通滤波脑电图在每个频段都显示出持续的增强和减弱;振幅甚至一秒钟都无法保持稳定。(摘要截断于400字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验