Suppr超能文献

基于机器学习的数据挖掘方法用于分析世越号渡轮灾难对社会压力影响的情感分析

Machine Learning-Based Data Mining Method for Sentiment Analysis of the Sewol Ferry Disaster's Effect on Social Stress.

作者信息

Lee Min-Joon, Lee Tae-Ro, Lee Seo-Joon, Jang Jin-Soo, Kim Eung Ju

机构信息

BK21PLUS Program in Embodiment: Health-Society Interaction, Department of Health Science, Graduate School, Korea University, Seoul, South Korea.

BK21PLUS Program in Embodiment: Health-Society Interaction, School of Health Policy and Management, Korea University, Seoul, South Korea.

出版信息

Front Psychiatry. 2020 Dec 23;11:505673. doi: 10.3389/fpsyt.2020.505673. eCollection 2020.

Abstract

The Sewol Ferry Disaster which took place in 16th of April, 2014, was a national level disaster in South Korea that caused severe social distress nation-wide. No research at the domestic level thus far has examined the influence of the disaster on social stress through a sentiment analysis of social media data. Data extracted from YouTube, Twitter, and Facebook were used in this study. The population was users who were randomly selected from the aforementioned social media platforms who had posted texts related to the disaster from April 2014 to March 2015. ANOVA was used for statistical comparison between negative, neutral, and positive sentiments under a 95% confidence level. For NLP-based data mining results, bar graph and word cloud analysis as well as analyses of phrases, entities, and queries were implemented. Research results showed a significantly negative sentiment on all social media platforms. This was mainly related to fundamental agents such as ex-president Park and her related political parties and politicians. YouTube, Twitter, and Facebook results showed negative sentiment in phrases (63.5, 69.4, and 58.9%, respectively), entity (81.1, 69.9, and 76.0%, respectively), and query topic (75.0, 85.4, and 75.0%, respectively). All results were statistically significant ( < 0.001). This research provides scientific evidence of the negative psychological impact of the disaster on the Korean population. This study is significant because it is the first research to conduct sentiment analysis of data extracted from the three largest existing social media platforms regarding the issue of the disaster.

摘要

2014年4月16日发生的“岁月号”客轮灾难是韩国的一场国家级灾难,在全国范围内造成了严重的社会困扰。迄今为止,国内尚未有研究通过对社交媒体数据进行情感分析来考察这场灾难对社会压力的影响。本研究使用了从YouTube、Twitter和Facebook提取的数据。研究对象是从上述社交媒体平台中随机选取的、在2014年4月至2015年3月期间发布了与该灾难相关文本的用户。方差分析用于在95%置信水平下对负面、中性和正面情绪进行统计比较。对于基于自然语言处理的数据挖掘结果,实施了柱状图和词云分析以及短语、实体和查询分析。研究结果表明,所有社交媒体平台上都存在显著的负面情绪。这主要与前总统朴槿惠及其相关政党和政客等主要行为体有关。YouTube、Twitter和Facebook的结果显示,在短语(分别为63.5%、69.4%和58.9%)、实体(分别为81.1%、69.9%和76.0%)和查询主题(分别为75.0%、85.4%和75.0%)方面均存在负面情绪。所有结果均具有统计学意义(<0.001)。本研究为该灾难对韩国民众的负面心理影响提供了科学证据。这项研究具有重要意义,因为它是首次对从现有的三大社交媒体平台提取的与该灾难相关的数据进行情感分析的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94d/7785789/9de7fdf82453/fpsyt-11-505673-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验