Matthews Megan L, Wang Jack P, Sederoff Ronald, Chiang Vincent L, Williams Cranos M
Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Comput Struct Biotechnol J. 2020 Dec 3;19:168-182. doi: 10.1016/j.csbj.2020.11.046. eCollection 2021.
Understanding the mechanisms behind lignin formation is an important research area with significant implications for the bioenergy and biomaterial industries. Computational models are indispensable tools for understanding this complex process. Models of the monolignol pathway in and other plants have been developed to explore how transgenic modifications affect important bioenergy traits. Many of these models, however, only capture one level of biological organization and are unable to capture regulation across multiple biological scales. This limits their ability to predict how gene modification strategies will impact lignin and other wood properties. While the first multiscale model of lignin biosynthesis in spanned the transcript, protein, metabolic, and phenotypic layers, it did not account for cross-regulatory influences that could impact abundances of untargeted monolignol transcripts and proteins. Here, we present a multiscale model incorporating these cross-regulatory influences for predicting lignin and wood traits from transgenic knockdowns of the monolignol genes. The three main components of this multiscale model are (1) a transcript-protein model capturing cross-regulatory influences, (2) a kinetic-based metabolic model, and (3) random forest models relating the steady state metabolic fluxes to 25 physical traits. We demonstrate that including the cross-regulatory behavior results in smaller predictive error for 23 of the 25 traits. We use this multiscale model to explore the predicted impact of novel combinatorial knockdowns on key bioenergy traits, and identify the perturbation of and & monolignol genes as a candidate strategy for increasing saccharification efficiencies while reducing negative impacts on wood density and height.
了解木质素形成背后的机制是一个重要的研究领域,对生物能源和生物材料行业具有重大意义。计算模型是理解这一复杂过程不可或缺的工具。已经开发了杨树和其他植物中单木质醇途径的模型,以探索转基因修饰如何影响重要的生物能源性状。然而,这些模型中的许多仅捕捉了一个生物组织层次,无法捕捉多个生物尺度上的调控。这限制了它们预测基因修饰策略将如何影响木质素和其他木材特性的能力。虽然杨树中第一个木质素生物合成的多尺度模型涵盖了转录、蛋白质、代谢和表型层面,但它没有考虑可能影响非靶向单木质醇转录本和蛋白质丰度的交叉调控影响。在这里,我们提出了一个多尺度模型,该模型纳入了这些交叉调控影响,用于从单木质醇基因的转基因敲低预测木质素和木材性状。这个多尺度模型的三个主要组成部分是:(1)一个捕捉交叉调控影响的转录-蛋白质模型,(2)一个基于动力学的代谢模型,以及(3)将稳态代谢通量与25个物理性状相关联的随机森林模型。我们证明,纳入交叉调控行为会使25个性状中的23个的预测误差更小。我们使用这个多尺度模型来探索新型组合敲低对关键生物能源性状的预测影响,并确定对和&单木质醇基因的扰动是一种候选策略,可提高糖化效率,同时减少对木材密度和高度的负面影响。