Pettine Jacob, Meyer Sean M, Medeghini Fabio, Murphy Catherine J, Nesbitt David J
JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States.
Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States.
ACS Nano. 2021 Jan 26;15(1):1566-1578. doi: 10.1021/acsnano.0c09045. Epub 2021 Jan 11.
Spatial and momentum distributions of excited charge carriers in nanoplasmonic systems depend sensitively on optical excitation parameters and nanoscale geometry, which therefore control the efficiency and functionality of plasmon-enhanced catalysts, photovoltaics, and nanocathodes. Growing appreciation over the past decade for the different roles of volume- surface-mediated excitation in such systems has underscored the need for explicit separation and quantification of these pathways. Toward these ends, we utilize angle-resolved photoelectron velocity map imaging to distinguish these processes in gold nanorods of different aspect ratios down to the spherical limit. Despite coupling to the longitudinal surface plasmon, we find that resonantly excited nanorods always exhibit transverse (sideways) multiphoton photoemission distributions due to photoexcitation within volume field enhancement regions rather than at the tip hot spots. This behavior is accurately reproduced ballistic Monte Carlo modeling, establishing that volume-excited electrons primarily escape through the nanorod sides. Furthermore, we demonstrate optical control over the photoelectron angular distributions a screening-induced transition from volume (transverse/side) to surface (longitudinal/tip) photoemission with red detuning of the excitation laser. Frequency-dependent cross sections are separately quantified for these mechanisms by comparison with theoretical calculations, combining volume and surface velocity-resolved photoemission modeling. Based on these results, we identify nanomaterial-specific contributions to the photoemission cross sections and offer general nanoplasmonic design principles for controlling photoexcitation/emission distributions geometry- and frequency-dependent tuning of the volume surface fields.
纳米等离子体系统中受激电荷载流子的空间和动量分布敏感地依赖于光激发参数和纳米尺度几何结构,因此这些参数控制着等离子体增强催化剂、光伏器件和纳米阴极的效率和功能。在过去十年中,人们越来越认识到体积介导和表面介导激发在这类系统中的不同作用,这突出了对这些激发途径进行明确分离和量化的必要性。为了实现这些目标,我们利用角分辨光电子速度映射成像来区分不同纵横比直至球形极限的金纳米棒中的这些过程。尽管与纵向表面等离子体耦合,但我们发现共振激发的纳米棒由于在体积场增强区域内而非尖端热点处的光激发,总是呈现横向(侧向)多光子光电子发射分布。这种行为通过弹道蒙特卡罗模拟得到了准确再现,证实了体积激发的电子主要通过纳米棒侧面逃逸。此外,我们展示了对光电子角分布的光学控制——随着激发激光的红失谐,从体积(横向/侧向)到表面(纵向/尖端)光发射的屏蔽诱导转变。通过与理论计算进行比较,结合体积和表面速度分辨光电子发射模拟,分别对这些机制的频率相关截面进行了量化。基于这些结果,我们确定了对光电子发射截面的纳米材料特定贡献,并提供了用于控制光激发/发射分布的通用纳米等离子体设计原则——体积和表面场的几何形状和频率相关调谐。