Pettine Jacob, Marton Menendez Andrea, Nesbitt David J
National Institute of Standards and Technology, JILA, University of Colorado Boulder, Boulder, Colorado 80309, USA.
J Chem Phys. 2020 Sep 14;153(10):101101. doi: 10.1063/5.0022181.
A variety of applications rely on the efficient generation of hot carriers within metal nanoparticles and charge transfer to surrounding molecules or materials. The optimization of such processes requires a detailed understanding of excited carrier spatial, temporal, and momentum distributions, which also leads to opportunities for active optical control over hot carrier dynamics on nanometer and femtosecond scales. Such capabilities are emerging in nanoplasmonic systems and typically rely on tuning optical polarization and/or frequency to selectively excite one or more discrete hot spots defined by the particle geometry. Here, we introduce a unique case in which hot electron excitation and emission distributions can instead be continuously controlled via linear laser polarization in the azimuthal plane of a gold nanoshell supported on a substrate. In this configuration, it is the laser field that breaks the azimuthal symmetry of the supported nanoshell and determines the plasmonic field distribution. Using angle-resolved photoelectron velocity map imaging, we find that the hot electrons are predominantly emitted orthogonal to the nanoshell dipolar surface plasmon resonance axis defined by the laser polarization. Furthermore, such anisotropic emission is only observed for nanoshells, while solid gold nanospheres are found to be isotropic emitters. We show that all of these effects are recapitulated via simulation of the plasmonic electric field distributions within the nanoparticle volume and ballistic Monte Carlo modeling of the hot electron dynamics. These results demonstrate a highly predictive level of understanding of the underlying physics and possibilities for ultrafast spatiotemporal control over hot carrier dynamics.
多种应用依赖于在金属纳米颗粒内高效产生热载流子以及电荷转移到周围分子或材料。此类过程的优化需要详细了解激发载流子的空间、时间和动量分布,这也为在纳米和飞秒尺度上对热载流子动力学进行主动光学控制带来了机遇。此类能力正在纳米等离子体系统中出现,并且通常依赖于调节光偏振和/或频率以选择性地激发由粒子几何形状定义的一个或多个离散热点。在此,我们介绍一种独特的情况,其中热电子激发和发射分布反而可以通过在支撑于基底上的金纳米壳的方位平面内的线性激光偏振来连续控制。在这种配置中,是激光场打破了支撑纳米壳的方位对称性并决定了等离子体场分布。使用角分辨光电子速度映射成像,我们发现热电子主要垂直于由激光偏振定义的纳米壳偶极表面等离子体共振轴发射。此外,这种各向异性发射仅在纳米壳中观察到,如果发现实心金纳米球是各向同性发射体。我们表明,所有这些效应都通过模拟纳米颗粒体积内的等离子体电场分布以及热电子动力学的弹道蒙特卡罗建模得以重现。这些结果展示了对基础物理的高度预测性理解以及对热载流子动力学进行超快时空控制的可能性。