Pettine Jacob, Choo Priscilla, Medeghini Fabio, Odom Teri W, Nesbitt David J
JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO, 80309, USA.
Department of Physics, University of Colorado Boulder, Boulder, CO, 80309, USA.
Nat Commun. 2020 Mar 13;11(1):1367. doi: 10.1038/s41467-020-15115-0.
Plasmonic nanocathodes offer unique opportunities for optically driving, switching, and steering femtosecond photocurrents in nanoelectronic devices and pulsed electron sources. However, angular photocurrent distributions in nanoplasmonic systems remain poorly understood and are therefore difficult to anticipate and control. Here, we provide a direct momentum-space characterization of multiphoton photoemission from plasmonic gold nanostars and demonstrate all-optical control over these currents. Versatile angular control is achieved by selectively exciting different tips on single nanostars via laser frequency or linear polarization, thereby rotating the tip-aligned directional photoemission as observed with angle-resolved 2D velocity mapping and 3D reconstruction. Classical plasmonic field simulations combined with quantum photoemission theory elucidate the role of surface-mediated nonlinear excitation for plasmonic field enhancements highly concentrated at the sharp tips (R = 3.4 nm). We thus establish a simple mechanism for femtosecond spatiotemporal current control in designer nanosystems.
等离子体纳米阴极为在纳米电子器件和脉冲电子源中光学驱动、切换和操纵飞秒光电流提供了独特的机会。然而,纳米等离子体系统中的角光电流分布仍知之甚少,因此难以预测和控制。在这里,我们对等离子体金纳米星的多光子光发射进行了直接的动量空间表征,并展示了对这些电流的全光控制。通过激光频率或线性偏振选择性地激发单个纳米星上的不同尖端,实现了通用的角度控制,从而如通过角分辨二维速度映射和三维重建所观察到的那样,旋转与尖端对齐的定向光发射。经典的等离子体场模拟与量子光发射理论相结合,阐明了表面介导的非线性激发对高度集中在尖锐尖端(R = 3.4 nm)的等离子体场增强的作用。因此,我们在定制纳米系统中建立了一种用于飞秒时空电流控制的简单机制。