Kohlschmidt Nicolai, Elbracht Miriam, Czech Artur, Häusler Martin, Phan Vietxuan, Töpf Ana, Huang Kai-Ting, Bartok Adam, Eggermann Katja, Zippel Stephanie, Eggermann Thomas, Freier Erik, Groß Claudia, Lochmüller Hanns, Horvath Rita, Hajnóczky György, Weis Joachim, Roos Andreas
Institute of Clinical Genetics and Tumour Genetics, Bonn, Germany.
Institute of Human Genetics, RWTH Aachen University Hospital, Aachen, Germany.
Neuropathol Appl Neurobiol. 2021 Oct;47(6):840-855. doi: 10.1111/nan.12694. Epub 2021 Feb 22.
MICU1 encodes the gatekeeper of the mitochondrial Ca uniporter, MICU1 and biallelic loss-of-function mutations cause a complex, neuromuscular disorder in children. Although the role of the protein is well understood, the precise molecular pathophysiology leading to this neuropaediatric phenotype has not been fully elucidated. Here we aimed to obtain novel insights into MICU1 pathophysiology.
Molecular genetic studies along with proteomic profiling, electron-, light- and Coherent anti-Stokes Raman scattering microscopy and immuno-based studies of protein abundances and Ca transport studies were employed to examine the pathophysiology of MICU1 deficiency in humans.
We describe two patients carrying MICU1 mutations, two nonsense (c.52C>T; p.(Arg18*) and c.553C>T; p.(Arg185*)) and an intragenic exon 2-deletion presenting with ataxia, developmental delay and early onset myopathy, clinodactyly, attention deficits, insomnia and impaired cognitive pain perception. Muscle biopsies revealed signs of dystrophy and neurogenic atrophy, severe mitochondrial perturbations, altered Golgi structure, vacuoles and altered lipid homeostasis. Comparative mitochondrial Ca transport and proteomic studies on lymphoblastoid cells revealed that the [Ca ] threshold and the cooperative activation of mitochondrial Ca uptake were lost in MICU1-deficient cells and that 39 proteins were altered in abundance. Several of those proteins are linked to mitochondrial dysfunction and/or perturbed Ca homeostasis, also impacting on regular cytoskeleton (affecting Spectrin) and Golgi architecture, as well as cellular survival mechanisms.
Our findings (i) link dysregulation of mitochondrial Ca uptake with muscle pathology (including perturbed lipid homeostasis and ER-Golgi morphology), (ii) support the concept of a functional interplay of ER-Golgi and mitochondria in lipid homeostasis and (iii) reveal the vulnerability of the cellular proteome as part of the MICU1-related pathophysiology.
MICU1编码线粒体钙单向转运体的守门蛋白,MICU1双等位基因功能丧失突变会导致儿童出现一种复杂的神经肌肉疾病。尽管该蛋白的作用已为人熟知,但导致这种神经儿科表型的确切分子病理生理学尚未完全阐明。在此,我们旨在深入了解MICU1的病理生理学。
采用分子遗传学研究、蛋白质组学分析、电子显微镜、光学显微镜和相干反斯托克斯拉曼散射显微镜以及基于免疫的蛋白质丰度研究和钙转运研究,来检查人类MICU1缺乏的病理生理学。
我们描述了两名携带MICU1突变的患者,两个无义突变(c.52C>T;p.(Arg18*)和c.553C>T;p.(Arg185*))以及一个基因内第2外显子缺失,表现为共济失调、发育迟缓、早发性肌病、小指内弯、注意力缺陷、失眠和认知性疼痛感知受损。肌肉活检显示有营养不良和神经源性萎缩、严重的线粒体紊乱、高尔基体结构改变、空泡形成以及脂质稳态改变的迹象。对淋巴母细胞进行的线粒体钙转运和蛋白质组学比较研究表明,MICU1缺陷细胞中[Ca]阈值和线粒体钙摄取的协同激活丧失,并且有39种蛋白质的丰度发生了改变。其中几种蛋白质与线粒体功能障碍和/或钙稳态紊乱有关,也影响正常的细胞骨架(影响血影蛋白)和高尔基体结构以及细胞存活机制。
我们的研究结果(i)将线粒体钙摄取失调与肌肉病理(包括脂质稳态紊乱和内质网 - 高尔基体形态改变)联系起来,(ii)支持内质网 - 高尔基体与线粒体在脂质稳态中存在功能相互作用的概念,(iii)揭示了细胞蛋白质组作为MICU1相关病理生理学一部分的脆弱性。