MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
Departent of Biochemistry, Semmelweis University, Budapest, Hungary.
Sci Adv. 2022 Mar 18;8(11):eabj4716. doi: 10.1126/sciadv.abj4716.
Dysregulation of mitochondrial Ca homeostasis has been linked to neurodegenerative diseases. Mitochondrial Ca uptake is mediated via the calcium uniporter complex that is primarily regulated by MICU1, a Ca-sensing gatekeeper. Recently, human patients with MICU1 loss-of-function mutations were diagnosed with neuromuscular and cognitive impairments. While studies in patient-derived cells revealed altered mitochondrial calcium signaling, the neuronal pathogenesis was difficult to study. To fill this void, we created a neuron-specific MICU1-KO mouse model. These animals show progressive, abnormal motor and cognitive phenotypes likely caused by the degeneration of motor neurons in the spinal cord and the cortex. We found increased susceptibility to mitochondrial Ca overload-induced excitotoxic insults and cell death in MICU1-KO neurons and MICU1-deficient patient-derived cells, which can be blunted by inhibiting the mitochondrial permeability transition pore. Thus, our study identifies altered neuronal mitochondrial Ca homeostasis as causative in the clinical symptoms of MICU1-deficient patients and highlights potential therapeutic targets.
线粒体钙稳态失调与神经退行性疾病有关。线粒体钙摄取是通过钙单向转运体复合物介导的,该复合物主要受 MICU1 调节,MICU1 是一种钙感应门控蛋白。最近,患有 MICU1 功能丧失突变的人类患者被诊断出患有神经肌肉和认知障碍。虽然在患者来源的细胞中进行的研究揭示了改变的线粒体钙信号,但神经元发病机制难以研究。为了填补这一空白,我们创建了一种神经元特异性 MICU1-KO 小鼠模型。这些动物表现出进行性的、异常的运动和认知表型,可能是由脊髓和大脑皮层中的运动神经元退化引起的。我们发现 MICU1-KO 神经元和 MICU1 缺失的患者来源细胞对线粒体钙过载诱导的兴奋性损伤和细胞死亡的敏感性增加,而抑制线粒体通透性转换孔可以减轻这种损伤。因此,我们的研究表明,改变的神经元线粒体钙稳态是 MICU1 缺失患者临床症状的原因,并强调了潜在的治疗靶点。