Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States.
Elife. 2021 Jan 11;10:e63596. doi: 10.7554/eLife.63596.
Skilled motor behavior requires rapidly integrating external sensory input with information about internal state to decide which movements to make next. Using machine learning approaches for high-resolution kinematic analysis, we uncover the logic of a rapid decision underlying sensory-guided locomotion in mice. After detecting obstacles with their whiskers mice select distinct kinematic strategies depending on a whisker-derived estimate of obstacle location together with the position and velocity of their body. Although mice rely on whiskers for obstacle avoidance, lesions of primary whisker sensory cortex had minimal impact. While motor cortex manipulations affected the execution of the chosen strategy, the decision-making process remained largely intact. These results highlight the potential of machine learning for reductionist analysis of naturalistic behaviors and provide a case in which subcortical brain structures appear sufficient for mediating a relatively sophisticated sensorimotor decision.
熟练的运动行为需要快速整合外部感觉输入和关于内部状态的信息,以决定下一步进行哪些运动。我们使用机器学习方法进行高分辨率运动学分析,揭示了在小鼠感觉导向运动中快速决策的逻辑。在使用胡须检测到障碍物后,老鼠会根据胡须衍生的障碍物位置估计以及身体的位置和速度选择不同的运动学策略。尽管老鼠依靠胡须来避开障碍物,但初级胡须感觉皮层的损伤影响很小。虽然运动皮层的操作会影响所选策略的执行,但决策过程基本保持完整。这些结果突出了机器学习在简化分析自然行为方面的潜力,并提供了一个案例,即皮质下脑结构似乎足以介导相对复杂的感觉运动决策。