Humboldt Universität, Berlin 10117, Germany.
Humboldt Universität, Berlin 10117, Germany
eNeuro. 2024 Aug 29;11(8). doi: 10.1523/ENEURO.0304-23.2024. Print 2024 Aug.
Uncovering the relationships between neural circuits, behavior, and neural dysfunction may require rodent pose tracking. While open-source toolkits such as DeepLabCut have revolutionized markerless pose estimation using deep neural networks, the training process still requires human intervention for annotating key points of interest in video data. To further reduce human labor for neural network training, we developed a method that automatically generates annotated image datasets of rodent paw placement in a laboratory setting. It uses invisible but fluorescent markers that become temporarily visible under UV light. Through stroboscopic alternating illumination, adjacent video frames taken at 720 Hz are either UV or white light illuminated. After color filtering the UV-exposed video frames, the UV markings are identified and the paw locations are deterministically mapped. This paw information is then transferred to automatically annotate paw positions in the next white light-exposed frame that is later used for training the neural network. We demonstrate the effectiveness of our method using a KineWheel-DeepLabCut setup for the markerless tracking of the four paws of a harness-fixed mouse running on top of the transparent wheel with mirror. Our automated approach, made available open-source, achieves high-quality position annotations and significantly reduces the need for human involvement in the neural network training process, paving the way for more efficient and streamlined rodent pose tracking in neuroscience research.
揭示神经回路、行为和神经功能障碍之间的关系可能需要对啮齿动物姿势进行跟踪。虽然 DeepLabCut 等开源工具包通过深度学习网络彻底改变了无标记姿势估计,但训练过程仍然需要人工干预来注释视频数据中的关键点。为了进一步减少神经网络训练的人工劳动,我们开发了一种方法,可以自动生成实验室环境中啮齿动物爪子放置的带注释的图像数据集。它使用不可见但在紫外线下会暂时可见的荧光标记物。通过频闪交替照明,以 720 Hz 拍摄的相邻视频帧要么被紫外线照亮,要么被白光照亮。对紫外线曝光的视频帧进行颜色过滤后,识别出紫外线标记物,并确定爪子的位置。然后,将此爪信息传输到下一个白光曝光帧中,自动注释爪子位置,随后用于训练神经网络。我们使用 KineWheel-DeepLabCut 设置展示了我们方法的有效性,用于标记固定在 harness 上的老鼠在透明轮子上跑步时的四个爪子的无标记跟踪,轮子上安装了镜子。我们的自动化方法可公开获取,可实现高质量的位置注释,并大大减少了神经网络训练过程中对人工干预的需求,为神经科学研究中更高效、更精简的啮齿动物姿势跟踪铺平了道路。