Suppr超能文献

鉴定早期和晚期结肠腺癌中编码肿瘤特异性新抗原的候选基因。

Identification of candidate genes encoding tumor-specific neoantigens in early- and late-stage colon adenocarcinoma.

机构信息

Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Henan, China.

Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan, China.

出版信息

Aging (Albany NY). 2021 Jan 10;13(3):4024-4044. doi: 10.18632/aging.202370.

Abstract

Colon adenocarcinoma (COAD) is one of the most common gastrointestinal malignant tumors and is characterized by a high mortality rate. Here, we integrated whole-exome and RNA sequencing data from The Cancer Genome Atlas and investigated the mutational spectra of COAD-overexpressed genes to define clinically relevant diagnostic/prognostic signatures and to unmask functional relationships with both tumor-infiltrating immune cells and regulatory miRNAs. We identified 24 recurrently mutated genes (frequency > 5%) encoding putative COAD-specific neoantigens. Five of them (, , , and ) had not been previously reported as COAD biomarkers. Through machine learning-based feature selection, four early-stage-related (, , , and ) and four late-stage-related (, , and ) candidate neoantigen-encoding genes were selected as diagnostic signatures. They respectively showed 100% and 97% accuracy in predicting early- and late-stage patients, and an 8-gene signature had excellent prognostic performance predicting disease-free survival (DFS) in COAD patients. We also found significant correlations between the 24 candidate neoantigen genes and the abundance and/or activation status of 22 tumor-infiltrating immune cell types and 56 regulatory miRNAs. Our novel neoantigen-based signatures may improve diagnostic and prognostic accuracy and help design targeted immunotherapies for COAD treatment.

摘要

结直肠腺癌 (COAD) 是最常见的胃肠道恶性肿瘤之一,其死亡率很高。在这里,我们整合了来自癌症基因组图谱的全外显子组和 RNA 测序数据,研究了 COAD 过表达基因的突变谱,以定义临床相关的诊断/预后标志物,并揭示与肿瘤浸润免疫细胞和调节 miRNA 的功能关系。我们确定了 24 个高频突变基因(频率>5%),这些基因编码潜在的 COAD 特异性新生抗原。其中 5 个(、、、和)以前未被报道为 COAD 生物标志物。通过基于机器学习的特征选择,选择了四个与早期相关(、、、和)和四个与晚期相关(、、和)的候选新生抗原编码基因作为诊断标志物。它们分别在预测早期和晚期患者方面具有 100%和 97%的准确率,而 8 基因标志物在预测 COAD 患者无病生存 (DFS) 方面具有出色的预后性能。我们还发现 24 个候选新生抗原基因与 22 种肿瘤浸润免疫细胞类型和 56 种调节 miRNA 的丰度和/或激活状态之间存在显著相关性。我们基于新型新生抗原的标志物可能会提高诊断和预后的准确性,并有助于设计针对 COAD 治疗的靶向免疫疗法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47fc/7906157/3ecdfb9e869a/aging-13-202370-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验