Suppr超能文献

用于癌症新抗原预测的生物信息学方法。

Bioinformatic methods for cancer neoantigen prediction.

机构信息

Johannes Gutenberg University, Mainz, Germany.

Agenus Inc., Lexington, MA, United States.

出版信息

Prog Mol Biol Transl Sci. 2019;164:25-60. doi: 10.1016/bs.pmbts.2019.06.016. Epub 2019 Jul 18.

Abstract

Tumor cells accumulate aberrations not present in normal cells, leading to presentation of neoantigens on MHC molecules on their surface. These non-self neoantigens distinguish tumor cells from normal cells to the immune system and are thus targets for cancer immunotherapy. The rapid development of molecular profiling platforms, such as next-generation sequencing, has enabled the generation of large datasets characterizing tumor cells. The simultaneous development of algorithms has enabled rapid and accurate processing of these data. Bioinformatic software tools encoding the algorithms can be strung together in a workflow to identify neoantigens. Here, with a focus on high-throughput sequencing, we review state-of-the art bioinformatic tools along with the steps and challenges involved in neoantigen identification and recognition.

摘要

肿瘤细胞积累了正常细胞中不存在的异常,导致其表面 MHC 分子呈现新抗原。这些非自身的新抗原使肿瘤细胞能够与免疫系统区分开来,因此成为癌症免疫治疗的靶点。分子分析平台(如下一代测序)的快速发展使得生成大量的肿瘤细胞数据集成为可能。算法的同时发展使得这些数据的快速准确处理成为可能。编码算法的生物信息学软件工具可以串联在一起形成一个工作流程,以识别新抗原。在这里,我们重点关注高通量测序,同时回顾了新抗原鉴定和识别所涉及的最新生物信息学工具以及步骤和挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验