Deveza Lorenzo, Ashoken Jothikritika, Castaneda Gloria, Tong Xinming, Keeney Michael, Han Li-Hsin, Yang Fan
Department of Bioengineering, Stanford University 300 Pasteur Drive, Edwards R105, MC5341, Stanford, California 94305, United States.
MSTP Program, School of Medicine, Stanford University 300 Pasteur Drive, Stanford, California 94305, United States.
ACS Biomater Sci Eng. 2015 Mar 9;1(3):157-165. doi: 10.1021/ab500051v. Epub 2015 Mar 2.
Polymeric microspheres represent an injectable platform for controlling the release of a variety of biologics; microspheres may be combined in a modular fashion to achieve temporal release of two or more biomolecules. Microfluidics offers a versatile platform for synthesizing uniform polymeric microspheres harboring a variety of biologics under relatively mild conditions. Poly(ethylene glycol) (PEG) is a bioinert polymer that can be easily tailored to encapsulate and control the release of biologics. In this study, we report the microfluidic synthesis of biodegradable PEG-based microparticles for controlled release of growth factors or DNA nanoparticles. Simple changes in microfluidic design increased the rate of microparticle formation and controlled the size of the microspheres. Mesh size and degradation rate were controlled by varying the PEG polymer weight percent from 7.5 to 15% (w/v), thus tuning the release of growth factors and DNA nanoparticles, which retained their bioactivity in assays of cell proliferation and DNA transfection, respectively. This platform may provide a useful tool for synthesizing microspheres for use as injectable carriers to achieve coordinated growth-factor or DNA nanoparticle release in therapeutic applications.
聚合物微球是一种用于控制多种生物制剂释放的可注射平台;微球可以以模块化方式组合,以实现两种或更多种生物分子的定时释放。微流控技术提供了一个通用平台,可在相对温和的条件下合成包裹多种生物制剂的均匀聚合物微球。聚乙二醇(PEG)是一种生物惰性聚合物,可轻松定制以封装和控制生物制剂的释放。在本研究中,我们报告了用于控制生长因子或DNA纳米颗粒释放的基于PEG的可生物降解微粒的微流控合成。微流控设计的简单改变提高了微粒形成速率并控制了微球的大小。通过将PEG聚合物重量百分比从7.5% 变化到15%(w/v)来控制网孔尺寸和降解速率,从而调节生长因子和DNA纳米颗粒的释放,它们在细胞增殖和DNA转染试验中分别保持了生物活性。该平台可为合成用作可注射载体的微球提供有用工具,以在治疗应用中实现生长因子或DNA纳米颗粒的协同释放。