Suppr超能文献

容错生物启发式分层复合材料:模拟与实验

Defect-Tolerant Bioinspired Hierarchical Composites: Simulation and Experiment.

作者信息

Mirzaeifar Reza, Dimas Leon S, Qin Zhao, Buehler Markus J

机构信息

Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

出版信息

ACS Biomater Sci Eng. 2015 May 11;1(5):295-304. doi: 10.1021/ab500120f. Epub 2015 Apr 14.

Abstract

Defect tolerance, the capacity of a material to maintain strength even under the presence of cracks or flaws, is one of the essential demands in the design of composite materials, as manufacturing induced defects, or those generated during operation, can lead to catastrophic failure and dramatically reduce the mechanical performance. In this paper, we combine computational modeling and advanced multimaterial 3D printing to examine the mechanics of several different classes of defect-tolerant bioinspired hierarchical composites, built from two base materials with contrasting mechanical properties (stiff and soft). We find that in contrast to the brittle base constituents of the composites, the existence of a hierarchical architecture leads to superior defect-tolerant properties. We show that composites with more hierarchical levels dramatically improve the defect tolerance of the material. We also examine the effect of adding both self-similar and dissimilar hierarchical levels to the materials architecture, and show that the geometries with multiple hierarchical levels can retain a significant portion of their fracture strength in the presence of either large edge cracklike flaws or multiple small distributed defects in the material. We compare the stress distributions in materials with different numbers of hierarchies in both simulation and experiment and find a more uniform stress distribution in the uncracked region of materials with higher hierarchy levels. These results provide micromechanical insights into the origin of the higher defect tolerance observed in simulation and experiment.

摘要

缺陷容限,即材料即使在存在裂纹或缺陷的情况下仍能保持强度的能力,是复合材料设计中的基本要求之一,因为制造过程中产生的缺陷或运行期间产生的缺陷可能导致灾难性故障并显著降低机械性能。在本文中,我们结合计算建模和先进的多材料3D打印技术,研究了几种不同类型的具有缺陷容限的仿生分层复合材料的力学性能,这些复合材料由两种具有不同机械性能(硬和软)的基础材料制成。我们发现,与复合材料的脆性基础成分不同,分层结构的存在导致了卓越的缺陷容限性能。我们表明,具有更多分层级别的复合材料显著提高了材料的缺陷容限。我们还研究了在材料结构中添加自相似和不同分层级别的效果,并表明具有多个分层级别的几何形状在材料存在大的边缘裂纹状缺陷或多个小的分布缺陷时,仍能保留其断裂强度的很大一部分。我们在模拟和实验中比较了具有不同分层数量的材料中的应力分布,发现在具有更高分层级别的材料的未开裂区域中应力分布更均匀。这些结果为在模拟和实验中观察到的更高缺陷容限的起源提供了微观力学见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验