Suppr超能文献

机器嗅觉中的气味标记卷积编解码器

An Odor Labeling Convolutional Encoder-Decoder for Odor Sensing in Machine Olfaction.

机构信息

Department of Electromechanical Engineering, Guangdong University of Technology, 100, Waihuan Rd. W., Guangzhou Higher Education Mega Center, Guangzhou 510006, China.

出版信息

Sensors (Basel). 2021 Jan 8;21(2):388. doi: 10.3390/s21020388.

Abstract

Deep learning methods have been widely applied to visual and acoustic technology. In this paper, we propose an odor labeling convolutional encoder-decoder (OLCE) for odor identification in machine olfaction. OLCE composes a convolutional neural network encoder and decoder where the encoder output is constrained to odor labels. An electronic nose was used for the data collection of gas responses followed by a normative experimental procedure. Several evaluation indexes were calculated to evaluate the algorithm effectiveness: accuracy 92.57%, precision 92.29%, recall rate 92.06%, F1-Score 91.96%, and Kappa coefficient 90.76%. We also compared the model with some algorithms used in machine olfaction. The comparison result demonstrated that OLCE had the best performance among these algorithms.

摘要

深度学习方法已广泛应用于视觉和声学技术。在本文中,我们提出了一种用于机器嗅觉中气味识别的气味标记卷积编解码器(OLCE)。OLCE 由卷积神经网络编码器和解码器组成,其中编码器输出受到气味标签的约束。电子鼻用于收集气体响应数据,并遵循规范的实验程序。计算了几个评估指标来评估算法的有效性:准确率为 92.57%,精密度为 92.29%,召回率为 92.06%,F1 分数为 91.96%,kappa 系数为 90.76%。我们还将该模型与机器嗅觉中使用的一些算法进行了比较。比较结果表明,OLCE 在这些算法中具有最佳性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a0b/7826699/707c7f09193a/sensors-21-00388-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验