Suppr超能文献

基于独特肠道微生物单核苷酸变异标记物建立新型结直肠癌预测模型。

Establishing a novel colorectal cancer predictive model based on unique gut microbial single nucleotide variant markers.

机构信息

College of Food Science and Engineering, Hainan University , Haikou, Hainan, P. R. China.

Key Laboratory of Food Nutrition and Functional Food of HainanProvince, Hainan University, Haikou , Hainan, China.

出版信息

Gut Microbes. 2021 Jan-Dec;13(1):1-6. doi: 10.1080/19490976.2020.1869505.

Abstract

Current metagenomic species-based colorectal cancer (CRC) microbial biomarkers may confuse diagnosis because the genetic content of different microbial strains, even those belonging to the same species, may differ from 5% to 30%. Here, a total of 7549 non-redundant single nucleotide variants (SNVs) were annotated in 25 species from 3 CRC cohorts (n = 249). Then, 22 microbial SNV markers that contributed to distinguishing subjects with CRC from healthy subjects were identified by the random forest algorithm to construct a novel CRC predictive model. Excitingly, the predictive model showed high accuracy both in the training (AUC = 75.35%) and validation cohorts (AUC = 73.08%-88.02%). We further explored the specificity of these SNV markers in a broader background by performing a meta-analysis across 4 metabolic disease cohorts. Among these SNV markers, 3 SNVs that were enriched in CRC patients and located in the genomes of and were CRC specific (AUC = 72.51%-94.07%).

摘要

目前基于宏基因组物种的结直肠癌 (CRC) 微生物生物标志物可能会混淆诊断,因为不同微生物菌株的遗传内容,即使属于同一物种,也可能存在 5%至 30%的差异。在这里,我们在来自 3 个 CRC 队列的 25 个物种中总共注释了 7549 个非冗余单核苷酸变异 (SNV)(n = 249)。然后,通过随机森林算法确定了 22 个有助于区分 CRC 患者和健康受试者的微生物 SNV 标志物,以构建一种新的 CRC 预测模型。令人兴奋的是,该预测模型在训练集(AUC = 75.35%)和验证集(AUC = 73.08%-88.02%)中均表现出较高的准确性。我们通过在 4 个代谢疾病队列中进行荟萃分析,进一步在更广泛的背景下探索了这些 SNV 标志物的特异性。在这些 SNV 标志物中,3 个在 CRC 患者中富集且位于 和 基因组中的 SNV 标志物具有 CRC 特异性(AUC = 72.51%-94.07%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2d2/7808391/bf79f065ac27/KGMI_A_1869505_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验