文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Multi-kingdom microbiota analyses identify bacterial-fungal interactions and biomarkers of colorectal cancer across cohorts.

作者信息

Liu Ning-Ning, Jiao Na, Tan Jing-Cong, Wang Ziliang, Wu Dingfeng, Wang An-Jun, Chen Jie, Tao Liwen, Zhou Chenfen, Fang Wenjie, Cheong Io Hong, Pan Weihua, Liao Wanqing, Kozlakidis Zisis, Heeschen Christopher, Moore Geromy G, Zhu Lixin, Chen Xingdong, Zhang Guoqing, Zhu Ruixin, Wang Hui

机构信息

State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

National Clinical Research Center for Child Health, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Nat Microbiol. 2022 Feb;7(2):238-250. doi: 10.1038/s41564-021-01030-7. Epub 2022 Jan 27.


DOI:10.1038/s41564-021-01030-7
PMID:35087227
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8813618/
Abstract

Despite recent progress in our understanding of the association between the gut microbiome and colorectal cancer (CRC), multi-kingdom gut microbiome dysbiosis in CRC across cohorts is unexplored. We investigated four-kingdom microbiota alterations using CRC metagenomic datasets of 1,368 samples from 8 distinct geographical cohorts. Integrated analysis identified 20 archaeal, 27 bacterial, 20 fungal and 21 viral species for each single-kingdom diagnostic model. However, our data revealed superior diagnostic accuracy for models constructed with multi-kingdom markers, in particular the addition of fungal species. Specifically, 16 multi-kingdom markers including 11 bacterial, 4 fungal and 1 archaeal feature, achieved good performance in diagnosing patients with CRC (area under the receiver operating characteristic curve (AUROC) = 0.83) and maintained accuracy across 3 independent cohorts. Coabundance analysis of the ecological network revealed associations between bacterial and fungal species, such as Talaromyces islandicus and Clostridium saccharobutylicum. Using metagenome shotgun sequencing data, the predictive power of the microbial functional potential was explored and elevated D-amino acid metabolism and butanoate metabolism were observed in CRC. Interestingly, the diagnostic model based on functional EggNOG genes achieved high accuracy (AUROC = 0.86). Collectively, our findings uncovered CRC-associated microbiota common across cohorts and demonstrate the applicability of multi-kingdom and functional markers as CRC diagnostic tools and, potentially, as therapeutic targets for the treatment of CRC.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/8bf683ed70db/41564_2021_1030_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/3fb483e3d155/41564_2021_1030_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/c90a400e7738/41564_2021_1030_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/29dae7267dfe/41564_2021_1030_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/a2a46da52023/41564_2021_1030_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/b2c5f79ae3d3/41564_2021_1030_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/e076d44696d5/41564_2021_1030_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/fdfabacf3598/41564_2021_1030_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/bdccaf3aa693/41564_2021_1030_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/6e8332d5ef7f/41564_2021_1030_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/e0d0d605536a/41564_2021_1030_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/6abb4aa4152f/41564_2021_1030_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/73475643129f/41564_2021_1030_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/c4a7b516c715/41564_2021_1030_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/ea2cdefb7a1b/41564_2021_1030_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/8bf683ed70db/41564_2021_1030_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/3fb483e3d155/41564_2021_1030_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/c90a400e7738/41564_2021_1030_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/29dae7267dfe/41564_2021_1030_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/a2a46da52023/41564_2021_1030_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/b2c5f79ae3d3/41564_2021_1030_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/e076d44696d5/41564_2021_1030_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/fdfabacf3598/41564_2021_1030_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/bdccaf3aa693/41564_2021_1030_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/6e8332d5ef7f/41564_2021_1030_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/e0d0d605536a/41564_2021_1030_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/6abb4aa4152f/41564_2021_1030_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/73475643129f/41564_2021_1030_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/c4a7b516c715/41564_2021_1030_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/ea2cdefb7a1b/41564_2021_1030_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098c/8813618/8bf683ed70db/41564_2021_1030_Fig15_ESM.jpg

相似文献

[1]
Multi-kingdom microbiota analyses identify bacterial-fungal interactions and biomarkers of colorectal cancer across cohorts.

Nat Microbiol. 2022-2

[2]
Multimodal metagenomic analysis reveals microbial single nucleotide variants as superior biomarkers for early detection of colorectal cancer.

Gut Microbes. 2023-12

[3]
Longitudinal and Multi-Kingdom Gut Microbiome Alterations in a Mouse Model of Alzheimer's Disease.

Int J Mol Sci. 2024-10-25

[4]
Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers.

Microbiome. 2018-4-11

[5]
Microbiome and fragmentation pattern of blood cell-free DNA and fecal metagenome enhance colorectal cancer micro-dysbiosis and diagnosis analysis: a proof-of-concept study.

mSystems. 2025-5-20

[6]
Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer.

Gut. 2015-9-25

[7]
Multikingdom and functional gut microbiota markers for autism spectrum disorder.

Nat Microbiol. 2024-9

[8]
Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer.

Gut. 2018-11-24

[9]
Multi-Cohort Analysis Reveals Altered Archaea in Colorectal Cancer Fecal Samples Across Populations.

Gastroenterology. 2025-3

[10]
Gut microbiota dysbiosis signature is associated with the colorectal carcinogenesis sequence and improves the diagnosis of colorectal lesions.

J Gastroenterol Hepatol. 2020-12

引用本文的文献

[1]
Intratumoral microbiota: implications for cancer progression and treatment.

Front Microbiol. 2025-7-28

[2]
Meta-analysis of gut microbiome reveals patterns of dysbiosis in colorectal cancer patients.

J Med Microbiol. 2025-7

[3]
Gut microbes and their metabolites in relation to the classic tumor suppressor gene P53: a novel narrative.

NPJ Biofilms Microbiomes. 2025-7-17

[4]
Metagenomic polymorphic toxin effector and immunity profiling predicts microbiome development and disease-related dysbiosis.

bioRxiv. 2025-7-8

[5]
Deep Learning Transforms Phage-Host Interaction Discovery from Metagenomic Data.

bioRxiv. 2025-6-27

[6]
Characteristics of cancer mycobiome in patients with acral melanoma.

J Immunother Cancer. 2025-7-15

[7]
Harnessing Nutritional Niches to Explore Fungus-Animal Symbioses.

Ecol Lett. 2025-7

[8]
Moderate altitude exposure impacts extensive host-microbiota multi-kingdom connectivity with serum metabolome and fasting blood glucose.

Virulence. 2025-12

[9]
Multi-kingdom microbial changes and their associations with the clinical characteristics in schizophrenia patients.

Transl Psychiatry. 2025-7-5

[10]
State of omics-based microbial diagnostics of CRC.

Gut Microbes. 2025-12

本文引用的文献

[1]
Population structure discovery in meta-analyzed microbial communities and inflammatory bowel disease using MMUPHin.

Genome Biol. 2022-10-3

[2]
Multivariable association discovery in population-scale meta-omics studies.

PLoS Comput Biol. 2021-11

[3]
Identification of microbial markers across populations in early detection of colorectal cancer.

Nat Commun. 2021-5-24

[4]
Gene-level metagenomic architectures across diseases yield high-resolution microbiome diagnostic indicators.

Nat Commun. 2021-5-18

[5]
Multi-kingdom ecological drivers of microbiota assembly in preterm infants.

Nature. 2021-3

[6]
The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer.

Nat Genet. 2021-1

[7]
Bacterial-fungal interactions revealed by genome-wide analysis of bacterial mutant fitness.

Nat Microbiol. 2021-1

[8]
Host-microbiota maladaptation in colorectal cancer.

Nature. 2020-9-23

[9]
Lifestyle, multi-omics features, and preclinical dementia among Chinese: The Taizhou Imaging Study.

Alzheimers Dement. 2021-1

[10]
Altered Gut Archaea Composition and Interaction With Bacteria Are Associated With Colorectal Cancer.

Gastroenterology. 2020-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索